Abstract This paper considers the teleportation of quantum controlled-Not (CNOT) gate by using partially entangled states. Different from the known probability schemes, it presents a method for teleporting a CNOT gate with unit fidelity and unit probability by using two partially entangled pairs as quantum channel. The method is applicable to any two partially entangled pairs satisfying the condition that their smaller Schmidt coefficients $\mu$ and $\nu$ are ($2\mu + 2\nu - 2\mu\nu - 1)≥0$. In this scheme, the sender's local generalized measurement described by a positive operator valued measurement (POVM) lies at the heart. It constructs the required POVM. It also puts forward a scheme for teleporting a CNOT with two targets gate with unit fidelity by using same quantum channel. With assistance of local operations and classical communications, three spatially separated users are able to complete the teleportation of a CNOT with two targets gate with probability of $(2\mu + 2\nu- 1)$. With a proper value of $\mu$ and $\nu$, the probability could reach nearly 1.
Received: 11 March 2008
Revised: 11 June 2008
Accepted manuscript online:
PACS:
03.67.Lx
(Quantum computation architectures and implementations)
Fund: Project
supported by the Natural Science Foundation of Guangdong Province,
China (Grant No 06029431).
Cite this article:
Chen Li-Bing(陈立冰), Jin Rui-Bo(金锐博), and Lu Hong(路洪) Teleporting a quantum controlled-Not with one target/two targets gate using two partially entangled states 2009 Chin. Phys. B 18 30
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.