Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(10): 3687-3695    DOI: 10.1088/1674-1056/17/10/026
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Equilibrium geometries and electronic properties of BenLi (n=2--15) clusters from first principles

Lei Xue-Ling(雷雪玲)a), Zhu Heng-Jiang(祝恒江)a)†, Wang Xian-Ming(王先明)a), and Luo You-Hua(罗有华)b) c)
a School of Maths-Physics and Information Sciences, Xinjiang Normal University, Urumqi 830054, Chinab Department of Physics, East China University of Science and Technology, Shanghai 200237, Chinac School of Physics and Electronics, Henan University, Kaifeng 475004, China
Abstract  This paper studies the equilibrium geometries and electronic properties of Be$_{n}$ and Be$_{n}$Li clusters, up to $n$=15, by using density-functional theory(DFT) at B3LYP/6--31G(d) level. The lowest-energy structures of Be$_{n}$ and Be$_{n}$Li clusters were determined. The results indicate that a single lithium impurity enhances the stability and chemical reactivity of the beryllium clusters. It finds that the geometries of the host clusters change significantly after the addition of the lithium atom for $n \ge $8. The lithium impurity prefers to be on the periphery of beryllium clusters, and occupies vertex sites. Both Be$_{4}$Li, Be$_{9}$Li, and Be$_{13}$Li were found to be particularly stable with higher average binding energy, local peaks of second-order energy difference and fragmentation energies. For all the Be$_{n}$Li clusters studied, we found charge transfers from the Li to Be site and co-existence of covalent and metallic bonding characteristics.
Keywords:  Be$_{n}$Li clusters      DFT      lowest-energy structure      electronic property  
Received:  14 January 2008      Revised:  21 March 2008      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the Xinjiang Normal University Excellent Young Teachers' Foundation, China (Grant No XJNU0730) and Xinjiang Normal University Priority Developing Disciplines' Foundation.

Cite this article: 

Lei Xue-Ling(雷雪玲), Zhu Heng-Jiang(祝恒江), Wang Xian-Ming(王先明), and Luo You-Hua(罗有华) Equilibrium geometries and electronic properties of BenLi (n=2--15) clusters from first principles 2008 Chin. Phys. B 17 3687

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[6] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[7] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[8] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[9] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[10] Polarization-resolved Raman spectra of α -PtO2
Zhanhong Lei(雷展宏), Weiliang Wang(王伟良), and Juncong She(佘峻聪). Chin. Phys. B, 2021, 30(4): 047102.
[11] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[12] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[13] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[14] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[15] Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K)
Yunhui Liu(刘云辉), Wei Wang(王威), Feng Xiao(肖峰), Liangbin Xiong(熊良斌), and Xing Ming(明星). Chin. Phys. B, 2021, 30(10): 108102.
No Suggested Reading articles found!