Please wait a minute...
Chinese Physics, 2007, Vol. 16(9): 2830-2836    DOI: 10.1088/1009-1963/16/9/056
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Quintessence models with an oscillating equation of state and their potentials

Zhao Wen(赵文)
Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310014, China
Abstract  In this paper, we investigate the quintessence models with an oscillating equation of state (EOS) and its potentials. From the constructed potentials, which have an EOS of $\omega_{\phi}=\omega_0+\omega_1\sin z$, we find that they are all the oscillating functions of the field $\phi$, and the oscillating amplitudes decrease (or increase) with $\phi$. From the evolutive equation of the field $\phi$, we find that this is caused by the expansion of the universe. This also makes it very difficult to build a model whose EOS oscillates forever. However one can build a model with EOS oscillating for a certain period of time. Then we discuss three quintessence models, which are the combinations of the invert power law functions and the oscillating functions of the field $\phi$. We find that they all follow the oscillating EOS.
Keywords:  quintessence      equation of state  
Received:  07 August 2006      Revised:  14 March 2007      Accepted manuscript online: 
PACS:  95.36.+x (Dark energy)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  

Cite this article: 

Zhao Wen(赵文) Quintessence models with an oscillating equation of state and their potentials 2007 Chinese Physics 16 2830

[1] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[2] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[3] Equation of state of LiCoO2 under 30 GPa pressure
Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(1): 016402.
[4] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[5] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[6] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
[7] Equation of state for warm dense lithium: A first principles investigation
Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君). Chin. Phys. B, 2017, 26(6): 065101.
[8] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
[9] Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression
Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2017, 26(10): 106402.
[10] Unreacted equation of states of typical energetic materials under static compression: A review
Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军). Chin. Phys. B, 2016, 25(7): 076202.
[11] Structure phase transformation and equation of state of cerium metal under pressures up to 51 GPa
Ce Ma(马策), Zuo-Yong Dou(窦作勇), Hong-Yang Zhu(祝洪洋), Guang-Yan Fu(付广艳), Xiao Tan(谈笑), Bin Bai(白彬), Peng-Cheng Zhang(张鹏程), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2016, 25(4): 046401.
[12] γ-and α-Ce phase diagram: First-principle calculation
Lin Zhang(张林), Ying-Hua Li(李英华), Xue-Mei Li(李雪梅), Zu-Gen Zhang(张祖根), Xiang-Ping Ye(叶想平), Ling-Cang Cai(蔡灵仓). Chin. Phys. B, 2016, 25(3): 033102.
[13] A modified equation of state for Xe at high pressures by molecular dynamics simulation
Xiao Hong-Xing (肖红星), Long Chong-Sheng (龙冲生). Chin. Phys. B, 2014, 23(2): 020502.
[14] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[15] An in situ high-pressure X-ray diffraction experiment of hydroxyapophyllite
Fan Da-Wei (范大伟), Wei Shu-Yi (魏舒怡), Xie Hong-Sen (谢鸿森). Chin. Phys. B, 2013, 22(1): 010702.
No Suggested Reading articles found!