Please wait a minute...
Chinese Physics, 2007, Vol. 16(9): 2825-2829    DOI: 10.1088/1009-1963/16/9/055
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Amplitude death in steadily forced chaotic systems

Feng Guo-Lin(封国林)a)b) † and He Wen-Ping(何文平)c)
a Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; b Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China; c Department of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
Abstract  Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant.
Keywords:  amplitude death      Lorenz system      steady forcing  
Received:  26 August 2006      Revised:  10 March 2007      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No~40325015), the National Key Program Development for Basic Research (Grant No~2006CB400503).

Cite this article: 

Feng Guo-Lin(封国林) and He Wen-Ping(何文平) Amplitude death in steadily forced chaotic systems 2007 Chinese Physics 16 2825

[1] Cooperative behaviors of coupled nonidentical oscillators with the same equilibrium points
Wen Sun(孙文), Biwen Li(李必文), Wanli Guo(郭万里), Zhigang Zheng(郑志刚), and Shihua Chen(陈士华). Chin. Phys. B, 2021, 30(10): 100504.
[2] A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system
Wang Zhen (王震), Huang Xia (黄霞), Li Yu-Xia (李玉霞), Song Xiao-Na (宋晓娜). Chin. Phys. B, 2013, 22(1): 010504.
[3] Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control
Fu Shi-Hui(付士慧), Lu Qi-Shao(陆启韶), and Du Ying(杜莹) . Chin. Phys. B, 2012, 21(6): 060507.
[4] Stochastic impulsive control for the stabilization of Lorenz system
Wang Liang(王亮), Zhao Rui(赵锐), Xu Wei(徐伟), and Zhang Ying(张莹) vgluept . Chin. Phys. B, 2011, 20(2): 020506.
[5] Horseshoe and entropy in a fractional-order unified system
Li Qing-Du(李清都), Chen Shu(陈述), and Zhou Ping(周平). Chin. Phys. B, 2011, 20(1): 010502.
[6] A new four-dimensional hyperchaotic Lorenz system and its adaptive control
Si Gang-Quan(司刚全), Cao Hui(曹晖), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(1): 010509.
[7] Estimating the bound for the generalized Lorenz system
Zheng Yu(郑宇) and Zhang Xiao-Dan(张晓丹) . Chin. Phys. B, 2010, 19(1): 010505.
[8] Synchronization of noise-perturbed generalized Lorenz system by sliding mode control
Kong Cui-Cui(孔翠翠) and Chen Shi-Hua (陈士华). Chin. Phys. B, 2009, 18(1): 91-97.
[9] Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
.. Giuseppe Grassi. Chin. Phys. B, 2008, 17(9): 3247-3251.
[10] Adaptive control and synchronization of an uncertain new hyperchaotic Lorenz system
Cai Guo-Liang(蔡国梁), Zheng Song(郑松), and Tian Li-Xin(田立新) . Chin. Phys. B, 2008, 17(7): 2412-2419.
[11] Design of output feedback controller for a unified chaotic system
Li Wen-Lin(李文林), Chen Xiu-Qin(陈秀琴), and Shen Zhi-Ping(沈志萍). Chin. Phys. B, 2008, 17(1): 87-91.
[12] Synchronization of hyperchaotic Lorenz system based on passive control
Wang Fa-Qiang(王发强) and Liu Chong-Xin(刘崇新). Chin. Phys. B, 2006, 15(9): 1971-1975.
[13] Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system
Li De-Quan(李德权). Chin. Phys. B, 2006, 15(11): 2541-2548.
[14] Experimental observation of partial amplitude death in coupled chaotic oscillators
Liu Wei-Qing (刘维清), Yang Jun-Zhong (杨俊忠), Xiao Jing-Hua (肖井华). Chin. Phys. B, 2006, 15(10): 2260-2265.
[15] Global stabilization of a Lorenz system
Li Shi-Hua (李世华), Tian Yu-Ping (田玉平). Chin. Phys. B, 2003, 12(6): 590-593.
No Suggested Reading articles found!