Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030402    DOI: 10.1088/1674-1056/22/3/030402
GENERAL Prev   Next  

Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes

Wei Yi-Huan (魏益焕)a, Ren Jun (任军)b
a Department of Physics, Bohai University, Jinzhou 121000, China;
b School of Science, Hebei University of Technology, Tianjin 300130, China
Abstract  Mass, electric charge, and temperature of black holes in the Reissner–Nordström–de Sitter quintessence (RN–dSQ) spacetime are obtained. The heat capacities of the RN–dSQ black hole for certain electric charge and mass are analyzed. The electrostatic energy and the dark energy in the RN–dSQ black hole are also calculated.
Keywords:  Reissner–Nordström–de Sitter quintessence (RN–dSQ) black hole      heat capacity      electrostatic energy      dark energy  
Received:  28 May 2012      Revised:  22 September 2012      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.62.+v (Quantum fields in curved spacetime)  
Fund: Project supported by the Education Committee of Liaoning Province of China (Grant No. 2009A036) and the Natural Science Foundation of Hebei Province of China (Grant No. A2011202129).
Corresponding Authors:  Wei Yi-Huan     E-mail:  weiyihuan@263.net

Cite this article: 

Wei Yi-Huan (魏益焕), Ren Jun (任军) Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes 2013 Chin. Phys. B 22 030402

[1] Kiselev V V 2003 Class. Quant. Grav. 20 1187
[2] Wei Y H and Chu Z H 2011 Chin. Phys. Lett. 28 100403
[3] Chen J H and Wang Y J 2007 Chin. Phys. Lett. 24 3063
[4] Ma C R, Gui Y X and Wang F J 2007 Chin. Phys. Lett. 24 3286
[5] Liu M L, Yu B H, Yu F and Gui Y X 2010 Eur. Phys. J. C 67 507
[6] Xi P, Ao X C and Li X Z 2010 Astrophys. Space Sci. 330 273
[7] Xi P 2009 Astrophys. Space Sci. 321 47
[8] Zhang Y and Gui Y X 2006 Class. Quant. Grav. 23 6141
[9] Zhang Y, Wang C Y, Gui Y X, Wang F J and Yu F 2009 Chin. Phys. Lett. 26 030401
[10] Zhang Y, Gui Y X, Yu F and Li F L 2007 Gen. Rel. Grav. 39 1003
[11] Saleh M, Thomas B B and Kofane T C 2009 Chin. Phys. Lett. 26 109802
[12] Chen S and Jing J 2005 Class. Quant. Grav. 22 4651
[13] Chen S B, Wang B and Su R K 2008 Phys. Rev. D 77 124011
[14] Chen J H and Wang Y J 2007 Chin. Phys. 16 3212
[15] Liao H, Chen J H and Wang Y J 2012 Chin. Phys. B 21 080402
[16] Sharmanthie F 2012 Gen. Rel. Grav. 44 1857
[17] Rahaman F and Jamil M 2010 Mod. Phys. Lett. A 25 835
[18] Li X Z, Xi P and Zhai X H 2008 Phys. Lett. B 666 125
[19] Aros R 2008 Phys. Rev. D 77 104013
[20] Gomberoff A and Teitelboim C 2003 Phys. Rev. D 67 104024
[21] Choudhury T R and Padmanabhan T 2007 Gen. Rel. Grav. 39 1789
[22] Misner C M and Sharp D H 1964 Phys. Rev. 136 B571
[23] Parikh M 2006 Phys. Rev. D 73 124021
[24] Wei Y H 2010 Chin. Phys. B 19 090404
[25] Padmanabhan T 2005 Phys. Rep. 406 49
[26] Padmanabhan T 2002 Class. Quantum Grav. 19 5387
[27] Tian Y and Wu X N 2011 JHEP 1101 150
[28] Wei Y H 2009 Phys. Lett. B 672 98
[1] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[2] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[3] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[4] Quadratic interaction effect on the dark energy density in the universe
Derya G Deveci, Ekrem Aydiner. Chin. Phys. B, 2017, 26(10): 109501.
[5] Entanglement detection in the mixed-spin Ising-XY model
Hamid Arian Zad. Chin. Phys. B, 2016, 25(3): 030303.
[6] New developments in the multiscale hybrid energy density computational method
Min Sun(孙敏), Shanying Wang(王山鹰), Dianwu Wang(王殿武), Chongyu Wang(王崇愚). Chin. Phys. B, 2016, 25(1): 013105.
[7] Mechanical properties of the thermal equilibrium Friedmann-Robertson-Walker universe model
Wei Yi-Huan (魏益焕), Lan Tian-Bao (兰天葆), Zhang Yue-Zhu (张月竹), Fu Yan-Yan (付妍妍). Chin. Phys. B, 2014, 23(5): 050401.
[8] New initial condition of the new agegraphic dark energy model
Li Yun-He (李云鹤), Zhang Jing-Fei (张敬飞), Zhang Xin (张鑫). Chin. Phys. B, 2013, 22(3): 039501.
[9] Pressure-induced phase transition in silicon nitride material
Chen Dong (陈东), Yu Ben-Hai (余本海). Chin. Phys. B, 2013, 22(2): 023104.
[10] Crystal structure and thermochemical properties of phase change materials bis(1-octylammonium) tetrachlorochromate
Lu Dong-Fei (卢冬飞), Di You-Ying (邸友莹), He Dong-Hua (何东华 ). Chin. Phys. B, 2012, 21(8): 080702.
[11] Constraints on the unified model of dark matter and dark energy
Lü Jian-Bo(吕剑波), Wu Ya-Bo(吴亚波), Xu Li-Xin(徐立昕), and Wang Yu-Ting(王钰婷) . Chin. Phys. B, 2011, 20(7): 079801.
[12] Growth of linear matter perturbations and current observational constraints
Fu Xiang-Yun(付响云), Wu Pu-Xun(吴普训), and Yu Hong-Wei(余洪伟). Chin. Phys. B, 2010, 19(7): 079801.
[13] Low-temperature heat capacities and standard molar enthalpy of formation of pyridine-2,6-dicarboxylic acid
Yang Wei-Wei(杨伟伟), Di You-Ying(邸友莹), Kong Yu-Xia(孔玉霞), and Tan Zhi-Cheng(谭志诚). Chin. Phys. B, 2010, 19(6): 060517.
[14] Exact solution of phantom dark energy model
Wang Wen-Fu(王文福), Shui Zheng-Wei(税正伟), and Tang Bin(唐斌). Chin. Phys. B, 2010, 19(11): 119801.
[15] Reconstructing dark energy potentials from parameterized deceleration parameters
Wang Yu-Ting(王钰婷), Xu Li-Xin(徐立昕), Lü Jian-Bo(吕剑波), and Gui Yuan-Xing(桂元星) . Chin. Phys. B, 2010, 19(1): 019801.
No Suggested Reading articles found!