Abstract Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.
Received: 10 May 2005
Revised: 12 September 2005
Accepted manuscript online:
PACS:
73.63.-b
(Electronic transport in nanoscale materials and structures)
Fund: Project supported by the Doctoral Program Foundation of Institutions of Higher Education, China (Grant No 20020533001).
Cite this article:
Ma Song-Shan (马松山), Xu Hui (徐慧), Liu Xiao-Liang (刘小良), Xiao Jian-Rong (肖剑荣) Direct current hopping conductance in one-dimensional diagonal disordered systems 2006 Chinese Physics 15 190
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.