Please wait a minute...
Chinese Physics, 2003, Vol. 12(3): 264-270    DOI: 10.1088/1009-1963/12/3/304
GENERAL Prev   Next  

Critical slowing down of the Gaussian spin system on diamond-type hierarchical lattices

Zhu Jian-Yang (朱建阳)a, Zhu Han (朱涵)b
a Department of Physics, Beijing Normal University, Beijing 100875, China; b Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  Based on the single-spin transition critical dynamics, we have investigated the critical slowing down of the Gaussian spin model situated on the fractal family of diamond-type hierarchical lattices. We calculate the dynamical critical exponent z and the correlation-length critical exponent $\nu$ using the dynamical decimation renormalization-group technique. The result, together with some earlier ones, suggests us to conclude that on a wide range of geometries, z$\nu$=1 is the general relationship, while the two exponents depend on the specific structure. However, we have investigated for various lattices in an earlier paper, the system studied in this paper shows highly universal z=1/$\nu$=2 independent of the structure and the dimensionality.
Keywords:  nonequilibrium thermodynamics and irreversible processes      dynamical critical phenomena      dynamical real-space renormalization-group  
Received:  21 August 2002      Revised:  19 October 2002      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  05.45.Df (Fractals)  
  05.70.Jk (Critical point phenomena)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  02.20.-a (Group theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10075025).

Cite this article: 

Zhu Jian-Yang (朱建阳), Zhu Han (朱涵) Critical slowing down of the Gaussian spin system on diamond-type hierarchical lattices 2003 Chinese Physics 12 264

[1] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[2] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[3] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[4] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[5] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[6] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[7] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[8] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[9] Topological Anderson insulator in two-dimensional non-Hermitian systems
Hongfang Liu(刘宏芳), Zixian Su(苏子贤), Zhi-Qiang Zhang(张智强), Hua Jiang(江华). Chin. Phys. B, 2020, 29(5): 050502.
[10] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[11] Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation
Ya-Ping Ma(马亚萍), Hui Zhang(张辉). Chin. Phys. B, 2020, 29(3): 038901.
[12] Analytical treatment of Anderson localization in a chain of trapped ions experiencing laser Bessel beams
Jun Wen(文军), Jian-Qi Zhang(张建奇), Lei-Lei Yan(闫磊磊), Mang Feng(冯芒). Chin. Phys. B, 2019, 28(1): 010306.
[13] Evacuation simulation considering action of guard in artificial attack
Chang-Kun Chen(陈长坤), Yun-He Tong(童蕴贺). Chin. Phys. B, 2019, 28(1): 010503.
[14] Model and application of bidirectional pedestrian flows at signalized crosswalks
Tao Zhang(张涛), Gang Ren(任刚), Zhi-Gang Yu(俞志钢), Yang Yang(杨阳). Chin. Phys. B, 2018, 27(7): 078901.
[15] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
No Suggested Reading articles found!