Abstract We have studied the influence of incident atoms with low energy on the Pt(100) surface by molecular dynamics simulation. The interaction potential obtained by the embedded atom method (EAM) was used in the simulation. The incident energy changes from 0.1eV to 200eV, and the target temperature ranges from 100 to 500 K. The target scales are 6×6×4 and 8×8×4 fcc cells for lower and higher incident energies, respectively. The adatom, sputtering, vacancy and backscattering yields are calculated. It was found that there is a sputtering threshold for the incident energy. When the incident energy is higher than the sputtering threshold, the sputtering yield increases with the increase of incident energy, and the sputtering shows a symmetrical pattern. We found that the adatom and vacancy yields increase as the incident energy increases. The vacancy yields are much higher than those obtained by Monte Carlo simulation. The dependence of the adatom and sputtering yields on the incident energy and the relative atomistic mechanisms are discussed.
Received: 18 September 2000
Accepted manuscript online:
PACS:
79.20.Rf
(Atomic, molecular, and ion beam impact and interactions with surfaces)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10075009) and by the Education Ministry of China (Grant No. 99148).
Cite this article:
Ye Zi-yan (叶子燕), Zhang Qing-yu (张庆瑜) ADATOM, VACANCY AND SPUTTERING YIELDS OF ENERGETIC Pt ATOMS IMPACTING ON Pt(100) BY MOLECULAR DYNAMICS SIMULATION 2001 Chinese Physics 10 329
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.