Please wait a minute...
Chinese Physics, 2004, Vol. 13(9): 1553-1559    DOI: 10.1088/1009-1963/13/9/033
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions

Wei Hong-Xiang (魏红祥)ab, Lu Qing-Feng (路庆凤)a, Zhao Su-Fen (赵素芬)b, Zhang Xie-Qun (张谢群)b, Feng Jia-Feng (丰家峰)b, Han Xiu-Feng (韩秀峰)b
a Department of Physics and Communication, Henan Normal University, Xinxiang 453002, China; b State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  Microfabrication and the magneto-transport characteristics of the magnetic tunnel junctions (MTJs) with a spin-valve-type structure of Ta (5nm)/Ni$_{79}$Fe$_{21}$ (25nm)/Ir$_{22}$Mn$_{78}$ (12nm)/Co$_{75}$Fe$_{25}$ (4nm)/Al(0.8nm) oxide/Co$_{75}$Fe$_{25}$ (4nm)/Ni$_{79}$Fe$_{21}$ (20nm)/Ta(5nm) were investigated in this paper. A series of experimental data measured with a MTJ was used to verify a magnon-assisted tunnelling model and theory. Furthermore, a micromagnetics simulation shows that the butterfly-like vortex domain structures can be formed under a current-induced Oersted field, which decreases the net magnetization values of the ferromagnetic electrodes under a large dc current (i.e., in high voltage regimes). It is one of the main reasons for the tunnel magnetoresistance ratios to decrease significantly at high voltage biasing.
Keywords:  magnetic tunnel junction      tunnel magnetorisistance      spin-electron transport      magnon-assisted tunnelling      vortex domain structure  
Received:  13 April 2004      Revised:  18 June 2004      Accepted manuscript online: 
PACS:  75.47.Np (Metals and alloys)  
  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  75.60.Ch (Domain walls and domain structure)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.30.Ds (Spin waves)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  

Cite this article: 

Wei Hong-Xiang (魏红祥), Lu Qing-Feng (路庆凤), Zhao Su-Fen (赵素芬), Zhang Xie-Qun (张谢群), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰) Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions 2004 Chinese Physics 13 1553

[1] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[2] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[3] Detection of HIV-1 antigen based on magnetic tunnel junction sensors
Li Li(李丽), Kai-Yu Mak(麦启宇), Yan Zhou(周艳). Chin. Phys. B, 2020, 29(8): 088701.
[4] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[5] Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure
Yi Liu(刘毅), Kai-Gui Zhu(朱开贵), Hui-Cai Zhong(钟汇才), Zheng-Yong Zhu(朱正勇), Tao Yu(于涛), Su-De Ma(马苏德). Chin. Phys. B, 2016, 25(11): 117805.
[6] Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer
Guo Hui-Qiang (郭会强), Tang Wei-Yue (唐伟跃), Liu Liang (刘亮), Wei Jian (危健), Li Da-Lai (李大来), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2015, 24(7): 078504.
[7] Perpendicular magnetic tunnel junction and its application in magnetic random access memory
Liu Hou-Fang (刘厚方), Syed Shahbaz Ali, Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2014, 23(7): 077501.
[8] Thermally activated magnetization reversal in magnetic tunnel junctions
Zhou Guang-Hong(周广宏), Wang Yin-Gang(王寅岗), Qi Xian-Jin(祁先进), Li Zi-Quan(李子全), and Chen Jian-Kang(陈建康). Chin. Phys. B, 2009, 18(2): 790-794.
[9] Bulk-like contribution to tunnel magnetoresistance in magnetic tunnel junctions
Zhu Tao (朱涛), Zhan Wen-Shan (詹文山), Shen Feng (沈峰), Zhang Ze (张泽), X. H. Xiang, G. Landry, John Q. Xiao. Chin. Phys. B, 2003, 12(6): 665-668.
No Suggested Reading articles found!