Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 114704    DOI: 10.1088/1674-1056/ae0894
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Molecular dynamics study incorporating regression analysis: Quantitative effects of sinusoidal protrusions and wettability on water phase transition containing insoluble gases

Bingheng Li(李丙衡)1, Yujian Gao(高雨键)1, Mian Yu(余绵)1, Lianfeng Wu(吴连锋)2, Lianxiang Ma(马连湘)1, and Yuanzheng Tang(唐元政)1,†
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;
2 State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co., Ltd., Qingdao 266071, China
Abstract  Molecular dynamics simulations were employed to establish a more realistic model of nanoscale boiling phase transitions. We examined the effects of different configurations of nanoscale sinusoidal protrusions and surface wettability on the phase transition behavior of systems containing insoluble gases under continuous heat flux input. To enhance the clarity and comparability of the results, a quantitative evaluation method was introduced. The findings reveal that, under identical wettability conditions, increasing the number of sinusoidal protrusions accelerates the onset of phase transition. In contrast, for a fixed number of protrusions, higher surface wettability delays the initiation of the phase change. By incorporating regression analysis to quantify the phase transition process and compare influencing factors, it was observed that although high wettability generally inhibits phase transition, the synergistic interaction between surface structure and wettability ultimately facilitates the phase transition process.
Keywords:  molecular dynamics      boiling      heat flux      insoluble gas  
Received:  01 July 2025      Revised:  17 September 2025      Accepted manuscript online:  18 September 2025
PACS:  47.55.dp (Cavitation and boiling)  
  44.20.+b (Boundary layer heat flow)  
  44.90.+c (Other topics in heat transfer)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52176077).
Corresponding Authors:  Yuanzheng Tang     E-mail:  tangyuanzheng@163.com

Cite this article: 

Bingheng Li(李丙衡), Yujian Gao(高雨键), Mian Yu(余绵), Lianfeng Wu(吴连锋), Lianxiang Ma(马连湘), and Yuanzheng Tang(唐元政) Molecular dynamics study incorporating regression analysis: Quantitative effects of sinusoidal protrusions and wettability on water phase transition containing insoluble gases 2025 Chin. Phys. B 34 114704

[1] Chen Y J, Zou Y, Sun D L, Wang Y and Yu B 2018 Int. J. Heat Mass Transf. 118 1143
[2] Hajebzadeh H, Abedini E, Adibi P and Hosseini M 2023 Int. Commun. Heat Mass Transf. 146 106890
[3] Zhang P, Zhou L, Jin L, Zhao H and Du X 2019 Appl. Phys. A 125 142
[4] She X, Shedd T A, Lindeman B, et al. 2016 Int. J. Heat Mass Transf. 95 278
[5] Hong S, Jiang S, Hu Y, Dang C and Wang S 2019 Int. J. Heat Mass Transf. 136 235
[6] Dong L N, Quan X J and Cheng P 2012 Int. J. Heat Mass Transf. 55 4376
[7] Seyf H R and Zhang Y 2013 Int. J. Heat Mass Transf. 66 613
[8] Yin X, Hu C, Bai M and Lv J 2019 Int. J. Multiphase Flow 115 9
[9] Hung T C, YanWM,Wang X D and Chang C Y 2012 Int. J. Heat Mass Transf. 55 2559
[10] Esfe M H, Yan W M, Akbari M, Karimipour A and Hassani M 2015 Int. Commun. Heat Mass Transf. 68 248
[11] Nagayama G, Tsuruta T and Cheng P 2006 Int. J. Heat Mass Transf. 49 4437
[12] Nagayama G and Cheng P 2004 Int. J. Heat Mass Transf. 47 501
[13] Chen Y J, Zou Y,Wang Y, Han D X and Yu B 2018 Int. Commun. Heat Mass Transf. 98 135
[14] Chen Y, Li J, Yu B, Sun D, Zou Y and Han D 2018 Langmuir 34 14234
[15] Liu R and Liu Z 2019 Int. J. Heat Mass Transf. 143 118534
[16] Hens A, Agarwal R and Biswas G 2014 Int. J. Heat Mass Transf. 71 303
[17] Li B, Gu Y and Chen M 2017 Exp. Fluids 58 164
[18] Baidakov V G 2016 J. Chem. Phys. 144 074502
[19] Wu L F, Tang Y Z, Ma L X, Feng S Y and He Y 2022 Int. J. Therm. Sci. 171 107212
[20] Yastrebov V A, Anciaux G and Molinari J F 2014 Tribol. Lett. 56 171
[21] Wang S, Wu L F, Tang Y Z and He Y 2022 Coatings 12 1943
[22] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106
[23] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[24] Kusalik P G and Svishchev I M 1994 Science 265 1219
[25] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327
[26] Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: CRC Press)
[27] Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225
[28] Kaminski G A, Friesner R A, Tirado-Rives J and Jorgensen W L 2001 J. Phys. Chem. B 105 6474
[29] Rafiee J, Mi X, Gullapalli H, Thomas A V, Yavari F, Shi Y, Ajayan P M and Koratkar N A 2012 Nat. Mater. 11 217
[30] Plimpton S 1995 J. Comput. Phys. 117 1
[31] Kaye G W C and Laby T H 1986 Tables of Physical and Chemical Constants 15th edn. (New York: Longman) p. 219
[32] Deng W, Ma S, Li W, Liu H and Zhao J 2022 Int. J. Heat Mass Transf. 191 122856
[33] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[34] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[35] Langmuir I 1918 J. Am. Chem. Soc. 40 1361
[36] Hanaor D A H, Ghadiri M, ChrzanowskiWand Gan Y 2014 Langmuir 30 15143
[37] Israelachvili J N 2011 Intermolecular and Surface Forces (San Diego: Academic Press)
[38] Zhong X, Yu J, Guo X and Saeed M 2018 Nucl. Eng. Des. 328 301
[39] Luo Q Q and Yang J M 2015 Chin. Phys. B 24 096801
[40] Jia J Q, Dang L X and Miller J D 2018 Physicochem. Probl. Miner. Process. 54 89
[41] The Engineering Toolbox, “Gases–Density”, accessed January 27, 2019, available at https://www.engineeringtoolbox.com/gas-densityd 158.html
[42] Tanaka M, Girard G, Davis R, Peuto A and Bignell N 2001 Metrologia 38 301
[43] Liu J T, Peng X F and YanWM2007 Int. J. Heat Mass Transf. 50 1855
[44] Li Z, Tan X, Fu Z, Liu L and Yang J Y 2023 Phys. Chem. Chem. Phys. 25 6746
[45] Oztop H F, Estelle P, YanWM, Al-Salem K, Orfi J and Mahian O 2015 Int. Commun. Heat Mass Transf. 60 37
[46] Lu G, Wang X D and Yan W M 2017 Int. J. Heat Mass Transf. 108 2253
[47] Draper N R and Smith H 1998 Applied Regression Analysis 3rd edn. (New York: Wiley)
[48] Neter J, Kutner M H, Nachtsheim C J and Wasserman W 1996 Applied Linear Statistical Models (Chicago: Irwin)
[1] Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study
Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开), Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝). Chin. Phys. B, 2025, 34(9): 096201.
[2] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[3] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[4] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[5] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[6] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[7] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[8] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[9] Experimental study on the regulation of radiative heat flux by coating SiC film
Haifeng Xia(閤海峰) and Huihui Sun(孙慧慧). Chin. Phys. B, 2025, 34(5): 054402.
[10] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[11] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[12] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[13] Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations
Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2025, 34(4): 046108.
[14] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[15] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
No Suggested Reading articles found!