| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Molecular dynamics study incorporating regression analysis: Quantitative effects of sinusoidal protrusions and wettability on water phase transition containing insoluble gases |
| Bingheng Li(李丙衡)1, Yujian Gao(高雨键)1, Mian Yu(余绵)1, Lianfeng Wu(吴连锋)2, Lianxiang Ma(马连湘)1, and Yuanzheng Tang(唐元政)1,† |
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; 2 State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co., Ltd., Qingdao 266071, China |
|
|
|
|
Abstract Molecular dynamics simulations were employed to establish a more realistic model of nanoscale boiling phase transitions. We examined the effects of different configurations of nanoscale sinusoidal protrusions and surface wettability on the phase transition behavior of systems containing insoluble gases under continuous heat flux input. To enhance the clarity and comparability of the results, a quantitative evaluation method was introduced. The findings reveal that, under identical wettability conditions, increasing the number of sinusoidal protrusions accelerates the onset of phase transition. In contrast, for a fixed number of protrusions, higher surface wettability delays the initiation of the phase change. By incorporating regression analysis to quantify the phase transition process and compare influencing factors, it was observed that although high wettability generally inhibits phase transition, the synergistic interaction between surface structure and wettability ultimately facilitates the phase transition process.
|
Received: 01 July 2025
Revised: 17 September 2025
Accepted manuscript online: 18 September 2025
|
|
PACS:
|
47.55.dp
|
(Cavitation and boiling)
|
| |
44.20.+b
|
(Boundary layer heat flow)
|
| |
44.90.+c
|
(Other topics in heat transfer)
|
| |
83.10.Mj
|
(Molecular dynamics, Brownian dynamics)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52176077). |
Corresponding Authors:
Yuanzheng Tang
E-mail: tangyuanzheng@163.com
|
Cite this article:
Bingheng Li(李丙衡), Yujian Gao(高雨键), Mian Yu(余绵), Lianfeng Wu(吴连锋), Lianxiang Ma(马连湘), and Yuanzheng Tang(唐元政) Molecular dynamics study incorporating regression analysis: Quantitative effects of sinusoidal protrusions and wettability on water phase transition containing insoluble gases 2025 Chin. Phys. B 34 114704
|
[1] Chen Y J, Zou Y, Sun D L, Wang Y and Yu B 2018 Int. J. Heat Mass Transf. 118 1143 [2] Hajebzadeh H, Abedini E, Adibi P and Hosseini M 2023 Int. Commun. Heat Mass Transf. 146 106890 [3] Zhang P, Zhou L, Jin L, Zhao H and Du X 2019 Appl. Phys. A 125 142 [4] She X, Shedd T A, Lindeman B, et al. 2016 Int. J. Heat Mass Transf. 95 278 [5] Hong S, Jiang S, Hu Y, Dang C and Wang S 2019 Int. J. Heat Mass Transf. 136 235 [6] Dong L N, Quan X J and Cheng P 2012 Int. J. Heat Mass Transf. 55 4376 [7] Seyf H R and Zhang Y 2013 Int. J. Heat Mass Transf. 66 613 [8] Yin X, Hu C, Bai M and Lv J 2019 Int. J. Multiphase Flow 115 9 [9] Hung T C, YanWM,Wang X D and Chang C Y 2012 Int. J. Heat Mass Transf. 55 2559 [10] Esfe M H, Yan W M, Akbari M, Karimipour A and Hassani M 2015 Int. Commun. Heat Mass Transf. 68 248 [11] Nagayama G, Tsuruta T and Cheng P 2006 Int. J. Heat Mass Transf. 49 4437 [12] Nagayama G and Cheng P 2004 Int. J. Heat Mass Transf. 47 501 [13] Chen Y J, Zou Y,Wang Y, Han D X and Yu B 2018 Int. Commun. Heat Mass Transf. 98 135 [14] Chen Y, Li J, Yu B, Sun D, Zou Y and Han D 2018 Langmuir 34 14234 [15] Liu R and Liu Z 2019 Int. J. Heat Mass Transf. 143 118534 [16] Hens A, Agarwal R and Biswas G 2014 Int. J. Heat Mass Transf. 71 303 [17] Li B, Gu Y and Chen M 2017 Exp. Fluids 58 164 [18] Baidakov V G 2016 J. Chem. Phys. 144 074502 [19] Wu L F, Tang Y Z, Ma L X, Feng S Y and He Y 2022 Int. J. Therm. Sci. 171 107212 [20] Yastrebov V A, Anciaux G and Molinari J F 2014 Tribol. Lett. 56 171 [21] Wang S, Wu L F, Tang Y Z and He Y 2022 Coatings 12 1943 [22] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106 [23] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269 [24] Kusalik P G and Svishchev I M 1994 Science 265 1219 [25] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327 [26] Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: CRC Press) [27] Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225 [28] Kaminski G A, Friesner R A, Tirado-Rives J and Jorgensen W L 2001 J. Phys. Chem. B 105 6474 [29] Rafiee J, Mi X, Gullapalli H, Thomas A V, Yavari F, Shi Y, Ajayan P M and Koratkar N A 2012 Nat. Mater. 11 217 [30] Plimpton S 1995 J. Comput. Phys. 117 1 [31] Kaye G W C and Laby T H 1986 Tables of Physical and Chemical Constants 15th edn. (New York: Longman) p. 219 [32] Deng W, Ma S, Li W, Liu H and Zhao J 2022 Int. J. Heat Mass Transf. 191 122856 [33] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012 [34] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33 [35] Langmuir I 1918 J. Am. Chem. Soc. 40 1361 [36] Hanaor D A H, Ghadiri M, ChrzanowskiWand Gan Y 2014 Langmuir 30 15143 [37] Israelachvili J N 2011 Intermolecular and Surface Forces (San Diego: Academic Press) [38] Zhong X, Yu J, Guo X and Saeed M 2018 Nucl. Eng. Des. 328 301 [39] Luo Q Q and Yang J M 2015 Chin. Phys. B 24 096801 [40] Jia J Q, Dang L X and Miller J D 2018 Physicochem. Probl. Miner. Process. 54 89 [41] The Engineering Toolbox, “Gases–Density”, accessed January 27, 2019, available at https://www.engineeringtoolbox.com/gas-densityd 158.html [42] Tanaka M, Girard G, Davis R, Peuto A and Bignell N 2001 Metrologia 38 301 [43] Liu J T, Peng X F and YanWM2007 Int. J. Heat Mass Transf. 50 1855 [44] Li Z, Tan X, Fu Z, Liu L and Yang J Y 2023 Phys. Chem. Chem. Phys. 25 6746 [45] Oztop H F, Estelle P, YanWM, Al-Salem K, Orfi J and Mahian O 2015 Int. Commun. Heat Mass Transf. 60 37 [46] Lu G, Wang X D and Yan W M 2017 Int. J. Heat Mass Transf. 108 2253 [47] Draper N R and Smith H 1998 Applied Regression Analysis 3rd edn. (New York: Wiley) [48] Neter J, Kutner M H, Nachtsheim C J and Wasserman W 1996 Applied Linear Statistical Models (Chicago: Irwin) |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|