| COMPUTATIONAL PROGRAMS FOR PHYSICS |
Prev
Next
|
|
|
VASPilot: MCP-facilitated multi-agent intelligence for autonomous VASP simulations |
| Jiaxuan Liu(刘家轩)1,2, Tiannian Zhu(朱天念)1,2, Caiyuan Ye(叶财渊)1,2, Zhong Fang(方忠)1,2, Hongming Weng(翁红明)1,2†, and Quansheng Wu(吴泉生)1,2‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract Density-functional-theory (DFT) simulations with the Vienna Ab initio Simulation Package (VASP) are indispensable in computational materials science but often require extensive manual setup, monitoring, and postprocessing. Here, we introduce VASPilot, an open-source platform that fully automates VASP workflows via a multi-agent architecture built on the CrewAI framework and a standardized model context protocol (MCP). VASPilot’s agent suite handles every stage of a VASP study from retrieving crystal structures and generating input files to submitting Slurm jobs, parsing error messages, and dynamically adjusting parameters for seamless restarts. A lightweight Quart-based web interface provides intuitive task submission, real-time progress tracking, and drill-down access to execution logs, structure visualizations, and plots. We validated VASPilot on both routine and advanced benchmarks: automated band-structure and density-of-states calculations (including on-the-fly symmetry corrections), plane-wave cutoff convergence tests, lattice-constant optimizations with various van der Waals corrections, and cross-material band-gap comparisons for transition-metal dichalcogenides. In all cases, VASPilot completed the missions reliably and without manual intervention. Moreover, its modular design allows easy extension to other DFT codes simply by deploying the appropriate MCP server. By offloading technical overhead, VASPilot enables researchers to focus on scientific discovery and accelerates high-throughput computational materials research.
|
Received: 25 August 2025
Revised: 09 September 2025
Accepted manuscript online: 15 September 2025
|
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
| Fund: Project supported by the Science Center of the National Natural Science Foundation of China (Grant No. 12188101), the National Key R&D Program of China (Grant Nos. 2023YFA1607400 and 2022YFA1403800), the National Natural Science Foundation of China (Grant Nos. 12274436, 11925408, and 11921004), and the New Cornerstone Science Foundation through the XPLORER PRIZE. The AI-driven experiments, simulations and model training were performed on the robotic AI-Scientist platform of the Chinese Academy of Science. |
Corresponding Authors:
Hongming Weng, Quansheng Wu
E-mail: hmweng@iphy.ac.cn;quansheng.wu@iphy.ac.cn
|
Cite this article:
Jiaxuan Liu(刘家轩), Tiannian Zhu(朱天念), Caiyuan Ye(叶财渊), Zhong Fang(方忠), Hongming Weng(翁红明), and Quansheng Wu(吴泉生) VASPilot: MCP-facilitated multi-agent intelligence for autonomous VASP simulations 2025 Chin. Phys. B 34 117106
|
[1] Xiao R, Li H and Chen L 2012 Chem. Mater. 24 4242 [2] Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L and Huang X 2013 Nat. Commun. 4 2365 [3] Wang X, Xiao R, Li H and Chen L 2017 Phys. Rev. Lett. 118 195901 [4] Jia Y, Yu J, Liu J, Herzog-Arbeitman J, Qi Z, Pi H, Regnault N, Weng H, Bernevig B A and Wu Q 2024 Phys. Rev. B 109 205121 [5] Wang C, Zhang X W, Liu X, He Y, Xu X, Ran Y, Cao T and Xiao D 2024 Phys. Rev. Lett. 132 036501 [6] Devakul T, Crpel V, Zhang Y and Fu L 2021 Nat. Commun. 12 6730 [7] Zhang S, Wu Q, Liu Y and Yazyev O V 2019 Phys. Rev. B 99 035142 [8] Liu Z, Zhang S, Fang Z, Weng H and Wu Q 2021 Phys. Rev. Res. 6 043185 [9] Pi H, Zhang S, Xu Y, Fang Z, Weng H and Wu Q 2024 npj Comput. Mater. 10 276 [10] Kresse G and Furthmller J 1996 Phys. Rev. B 54 11169 [11] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [12] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter 29 465901 [13] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567 [14] Ozaki T 2003 Phys. Rev. B 67 155108 [15] Weng H, Ozaki T and Terakura K 2009 Phys. Rev. B 79 235118 [16] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P and Snchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 [17] Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H and Marks L D 2020 J. Chem. Phys. 152 074101 [18] The Elk Code URL http://elk.sourceforge.net/ [19] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [20] Hjorth Larsen A, Jrgen Mortensen J, Blomqvist J, et al. 2017 J. Phys.: Condens. Matter 29 273002 [21] Ong S P, RichardsWD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314 [22] Wang H, Zhang L, Han J and E W 2018 Comput. Phys. Commun. 228 178 [23] Batzner S, Musaelian A, Sun L, et al. 2022 Nat. Commun. 13 2453 [24] Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J and Ceder G 2023 Nat. Mach. Intell. 5 1031 [25] Yang A, Li A, Yang B, et al. 2025 arXiv:2505.09388 [cs.CL] [26] DeepSeek-AI, Liu A, Feng B, et al. 2024 arXiv:2412.19437 [cs.CL] [27] DeepSeek-AI, Guo D, Yang D, et al. 2025 arXiv:2501.12948 [cs.CL] [28] Team G V, Hong W, Yu W, et al. 2025 arXiv:2507.01006 [cs.CV] [29] Meta AI 2025 Llama 4: A new era in multimodal intelligence [30] Team G, Kamath A, Ferret J, et al. 2025 arXiv:2503.19786 [cs.CL] [31] Kim S, Jung Y and Schrier J 2024 J. Am. Chem. Soc. 146 19654 [32] Song Z, Lu S, Ju M, Zhou Q andWang J 2024 arXiv:2407.07016 [condmat. mtrl-sci] [33] Zheng Z, Zhang O, Borgs C, Chayes J T and Yaghi O M 2023 J. Am. Chem. Soc. 145 18048 [34] Lee S, Cruse K, Baibakova V, Ceder G and Jain A 2025 Text-mined dataset of solid-state syntheses [35] Wang X D, Chen Z R, Guo P J, Gao Z F, Mu C and Lu Z Y 2025 arXiv:2507.16307 [cs.LG] [36] Hong S, Zhuge M, Chen J, et al. 2024 MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework [37] LangChain AI 2023 LangGraph: Build resilient language agents as graphs [38] CrewAI 2024 CrewAI: The Leading Multi-Agent Platform [39] Ghafarollahi A and Buehler M J 2024 arXiv:2407.10022 [cs.AI] [40] Thompson A P, Aktulga H M, Berger R, et al. 2022 Comput. Phys. Commun. 271 108171 [41] Zhang B, Li X, Xu H, Jin Z, Wu Q and Li C 2025 arXiv:2507.04053 [cond-mat.mtrl-sci] [42] Han X Q, Gao Z F, Guo P J and Lu Z Y 2025 PhysAgent: A Multi-Agent Approach to Automated Discovery of Physical Laws [43] Ni Z, Li Y, Hu K, et al. 2024 arXiv:2411.08063 [physics.soc-ph] [44] Song T, Luo M, Zhang X, et al. 2025 J. Am. Chem. Soc. 147 12534 [45] Zou Y, Cheng A H, Aldossary A, et al. 2025 Matter 8 102263 [46] Wang Z, Huang H, Zhao H, Xu C, Zhu S, Janssen J and Viswanathan V 2025 arXiv:2507.14267 [cs.AI] [47] Bannwarth C, Caldeweyher E, Ehlert S, et al. 2021 WIREs Comput. Mol. Sci. 11 e1493 [48] Model Context Protocol 2024 Model context protocol [49] Jain A, Ong S P, Hautier G, et al. 2013 APL Mater. 1 011002 [50] Lewis P, Perez E, Piktus A, et al. 2020 arXiv:2005.11401 [cs.CL] [51] Pallets Projects 2025 Quart [52] Pallets Projects 2025 Flask [53] Grimme S 2006 J. Comput. Chem. 27 1787 [54] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [55] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [56] Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005 [57] Klime J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [58] Klime J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 [59] Peng H, Yang Z H, Perdew J P and Sun J 2016 Phys. Rev. X 6 041005 [60] Ning J, Kothakonda M, Furness J W, et al. 2022 Phys. Rev. B 106 075422 [61] Sabatini R, Gorni T and De Gironcoli S 2013 Phys. Rev. B 87 041108 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|