|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Nonreciprocal phase shift within zeptosecond temporal scale |
| Xiao Han(韩啸)1 and Shuai Ben(贲帅)2,† |
1 Jilin Vocational College of Industry and Technology, Jilin 132013, China; 2 School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China |
|
|
|
|
Abstract We investigate the zeptosecond-timescale delayed ionization process induced by ultrafast laser propagation in different directions across the molecule. The experimental measurements by Grundmann et al.[Science 370 339 (2020)] serve as a basis for our study, where they extract the birth time delay of photoelectron emission from two nuclei, amounting to a few hundred zeptoseconds. By comparing and analyzing the results, we observe that asymmetric systems, such as the 2p$\sigma $ state of HeH$^{2+}$, exhibit nonequivalent responses to forward and backward laser propagation, resulting in an asymmetric dependence of the interference structure in the photoelectron momentum spectra. This process is considered as an ultrafast nonreciprocal phase shift with zeptosecond resolution. Through computational simulations, we explore the relationship between this kind of ultrafast nonreciprocity effect and molecular orbital symmetry. This study broadens our understanding of nonreciprocal physical mechanisms in the field of strong-field ultrafast dynamics, and provides a theoretical basis for the experimental investigation of the nonreciprocal phase shift within the zeptosecond timescale in the response processes of matter under ultrafast laser irradiation.
|
Received: 14 May 2025
Revised: 04 July 2025
Accepted manuscript online: 19 July 2025
|
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
| |
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
| |
87.15.mn
|
(Photoionization)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204136) and the Hainan Provincial Natural Science Foundation of China (Grant No. 122QN217). |
Corresponding Authors:
Shuai Ben
E-mail: benshuai@hainanu.edu.cn
|
Cite this article:
Xiao Han(韩啸) and Shuai Ben(贲帅) Nonreciprocal phase shift within zeptosecond temporal scale 2025 Chin. Phys. B 34 104201
|
[1] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Muller H G, Buttiker M and Keller U 2008 Science 322 1525 [2] Rost J M and Saalmann U 2019 Nat. Photon. 13 439 [3] Ramons R, Spierings D, Racicot I and Steinberg A 2020 Nature 583 529 [4] Tong J H, Liu X, Dong W, Jiang W, Zhu M, Xu Y, Zuo Z, Lu P, Gong X, Song X, Yang W and Wu J 2022 Phys. Rev. Lett. 129 173201 [5] Schultze M, Fiess M, Karpowicz N, et al. 2010 Science 328 1658 [6] Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel R, Gisselbrecht M and L’Huillier A 2017 Science 358 893 [7] Zipp L, Natan A and Bucksbaum P 2014 Optica 1 361 [8] Song X H, Shi G, Zhang G J, Xu J W, Lin C, Chen J and Yang W F 2018 Phys. Rev. Lett. 121 103201 [9] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [10] Chang Z and Corkum P 2010 J. Opt. Soc. Am. B 27 B9 [11] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [12] Itatani J, Quéré F, Yudin G L, Ivanov M Yu, Krausz F and Corkum P B 2002 Phys. Rev. Lett. 88 173903 [13] Kitzler M, Milosevic N, Scrinzi A, Krausz F and Brabec T 2022 Phys. Rev. Lett. 88 173904 [14] Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys. 87 765 [15] Zuo T, Bandrauk A D and Corkum P B 1996 Chem. Phys. Lett. 259 313 [16] Hu S X, Collins L A and Schneider B I 2009 Phys. Rev. A 80 023426 [17] Krasniqi F, Najjari B, Strüder L, Rolles D, Voitkiv A and Ullrich J 2010 Phys. Rev. A 81 033411 [18] Li Y, Qin M, Zhu X, Zhang Q, Lan P and Lu P 2015 Opt. Express 23 10687 [19] Nguyen N T, Lucchese R R, Lin C D and Le A T 2016 Phys. Rev. A 93 063419 [20] Minemoto S, Teramoto T, Akagi H, Fujikawa T, Majima T, Nakajima K, Niki K, Owada S, Sakai H, Togashi T, Tono K, Tsuru S, Wada K, Yabashi M, Yoshida S and Yagishita A 2016 Sci. Rep. 6 38654 [21] Kastirke G, Markus S, Weller M, et al. 2020 Phys. Rev. X 10 021052 [22] Sun Z, Yao H, Ren X, Liu Y, Wang D, Zhao W, Wang C and Yang C 2021 Opt. Express 29 10893 [23] Hosaka H, Adachi J, Golovin A V, Takahashi M, Teramoto T, Watanabe N, Yagishita A, Semenov S K and Cherepkov N A 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L25 [24] Wang M X, Chen S G, Liang H and Peng L Y 2020 Chin. Phys. B 29 013302 [25] Grundmann G, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S and Dörner R 2020 Science 370 339 [26] Zhang Z H and He F 2021 Phys. Rev. A 103 033112 [27] Seideman T, Ivanov M Y and Corkum P B 1995 Phys. Rev. Lett. 75 2819 [28] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511 [29] Lai X, Xu S, Yu S, Shi M, Quan W and Liu X 2021 Phys. Rev. A 104 043105 [30] Liu K, Hu Y, Zhang Q and Lu P 2021 Opt. Express 29 38758 [31] Liang H, Grundmann S, Fang Y, Geng L, Gong Q and Peng L 2021 Phys. Rev. A 104 L021101 [32] He P L, Hatsagortsyan K Z and Keitel C H 2022 Phys. Rev. Lett. 128 183201 [33] Hu Y, Liu K, Ma Q and Lu P 2022 J. Opt. Soc. Am. B 39 2486 [34] Tian Y, Hu Y, Zhou Y, Lu P and Liu K 2024 Phys. Rev. Research 6 043150 [35] Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J and Gong S 2018 Nat. Photonics 12 744 [36] Lin G, Zhang S, Hu Y, Niu Y, Gong J and Gong S 2019 Phys. Rev. Lett. 123 033902 [37] Sudiarta W and Geldart D J W 2007 J. Phys. A: Math. Theor. 40 1885 [38] Bian X B 2014 Phys. Rev. A 90 033403 [39] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [40] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405 [41] Tong X M, Watahiki S, Hino K and Toshima N 2007 Phys. Rev. Lett. 99 093001 [42] He P L, Takemoto N and He F 2015 Phys. Rev. A 91 063413 [43] Klaiber M, Yakaboylu E, Bauke H, Hatsagortsyan K Z and Keitel C H 2013 Phys. Rev. Lett. 110 153004 [44] He P L, Klaiber M, Hatsagortsyan K Z and Keitel C H 2022 Phys. Rev. A 105 L031102 [45] Rolles D, Braune M, Cvejanović S, Geßner O, Hentges R, Korica S, Langer B, Lischke T, Prümper G, Reinköster A, Viefhaus J, Zimmermann B, McKoy V and Becker U 2005 Nature 437 711 [46] Liu X J, Cherepkov N A, Semenov S K, Kimberg V, Gel’mukhanov F, Prümper G, Lischke T, Tanaka T, Hoshino M, Tanaka H and Ueda K 2006 J. Phys. B: At. Mol. Opt. Phys 39 4801 [47] Akoury D, Kreidi K, Jahnke T, et al. 2007 Science 318 949 [48] Zimmermann B, Rolles D, Langer B, Hentges R, Braune M, Cvejanovic S, Geßner O, Heiser F, Korica S, Lischke T, Reinköster A, Viefhaus J, Dörner R, McKoy V and Becker U 2008 Nat. Phys. 4 649 [49] Schöffler M S, Kreidi K, Akoury D, et al. 2008 Phys. Rev. A 78 013414 [50] Yang W, Sheng Z, Feng X, Wu M, Chen Z and Song X 2014 Opt. Express 22 2519 [51] Kunitski M, Eicke N, Huber P, Köhler J, Zeller S, Voigtsberger J, Schlott N, Henrichs K, Sann H, Trinter F, Schmidt L, Kalinin A, Schöffler M S, Jahnke T, Lein M and Dörner R 2019 Nat. Commun. 10 1 [52] Zhenning G and Liu Y 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065004 [53] Acharya B, Dubey S, Romans K, Silva A, Foster K, Russ O, Bartschat K, Douguet N and Fischer D 2022 Phys. Rev. A 106 023113 [54] Heck S, Han M, Jelovina D, Ji J, Perry C, Gong X, Lucchese R, Ueda K and Wörner H 2022 Phys. Rev. Lett. 129 133002 [55] Guo Z, Ge P, Fang Y, Dou Y, Yu X, Wang J, Gong Q and Liu Y 2022 Ultrafast Sci. 2022 9802917 [56] Bian X B and Bandrauk A D 2012 Phys. Rev. A 86 053417 [57] Lao D, He P L and He F 2016 Phys. Rev. A 93 063403 [58] Huo Y N, Li J and Ma F C 2018 Chin. Phys. B 27 013203 [59] Xu Z, Liang J, Liu K, Ciappina M F, Lu P and Zou Y 2024 Phys. Rev. A 110 013124 [60] Strang G 2013 Introduction to Linear Algebra 5th Edn. (Université Paris-Dauphine) [61] Campos J A, Nascimento D L, Cavalcante D T, Fonseca A L A and Nunes A O C 2006 Int. J. Quantum Chem. 106 2587 [62] He M, Li Y, Zhou Y, Li M, Cao W and Lu P 2018 Phys. Rev. Lett. 120 133204 [63] He M, Zhou Y, Tan J, Li Y, Li M and Lu P 2018 J. Phys. B: At. Mol. Opt. Phys. 51 245602 [64] He P L, Hatsagortsyan K Z and Keitel C H 2023 Phys. Rev. Lett. 131 013201 [65] Taravati S and Eleftheriades G V 2022 Phys. Rev. Appl. 18 034082 104201- |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|