Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090306    DOI: 10.1088/1674-1056/adefd6
Special Issue: SPECIAL TOPIC — Quantum communication and quantum network
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Protection path and security-metric-based resource allocation algorithm in quantum key distribution optical networks

Li Liu(刘力)1,†, Shengtong Zhai(翟晟童)1, Yao Pu(蒲瑶)2, and Xu Zhang(张旭)1
1 Academy of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 Xi'an Modern Control Technology Research Institute, Xi'an 710061, China
Abstract  Quantum key distribution (QKD) optical networks can provide more secure communications. However, with the increase of the QKD path requests and key updates, network blocking problems will become severe. The blocking problems in the network can become more severe because each fiber link has limited resources (such as wavelengths and time slots). In addition, QKD optical networks are also affected by external disturbances such as data interception and eavesdropping, resulting in inefficient network communication. In this paper, we exploit the idea of protection path to enhance the anti-interference ability of QKD optical network. By introducing the concept of security metric, we propose a routing wavelength and time slot allocation algorithm (RWTA) based on protection path, which can lessen the blocking problem of QKD optical network. According to simulation analysis, the security-metric-based RWTA algorithm (SM-RWTA) proposed in this paper can substantially improve the success rate of security key (SK) update and significantly reduce the blocking rate of the network. It can also improve the utilization rate of resources such as wavelengths and time slots. Compared with the non-security-metric-based RWTA algorithm (NSM-RWTA), our algorithm is robust and can enhance the anti-interference ability and security of QKD optical networks.
Keywords:  quantum key distribution (QKD)      optical network      security metric      protection path  
Received:  23 March 2025      Revised:  03 July 2025      Accepted manuscript online:  15 July 2025
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: This research was funded by Youth Program of Shaanxi Provincial Department of Science and Technology (Grant No. 2024JC-YBQN-0630).
Corresponding Authors:  Li Liu     E-mail:  liu_li@xupt.edu.cn

Cite this article: 

Li Liu(刘力), Shengtong Zhai(翟晟童), Yao Pu(蒲瑶), and Xu Zhang(张旭) Protection path and security-metric-based resource allocation algorithm in quantum key distribution optical networks 2025 Chin. Phys. B 34 090306

[1] Bi L, Yuan X T, Wu W J and Lin S X 2024 Chin. Phys. B 33 030309
[2] Xu H X, Wang S H, Wang C L and Zhang P 2025 Chin. Phys. Lett. 42 010303
[3] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y and An J M 2023 Chin. Phys. B 32 124207
[4] Brougham T and Oi D K L 2022 New J. Phys. 24 075002
[5] Kaewpuang R, Xu M, Lim W Y B, Niyato D, Yu H, Kang J and Shen X 2023 IEEE Internet of Things Journal 11 4454
[6] Muskan, Dutta A and Banerjee S 2025 Phys. Scr. 100 055117
[7] You J, Wang Y and An J M 2021 Chin. Phys. B 30 080302
[8] Rudavin N V, Gerasin I S, Mekhtiev E E, Duplinsky A V and Kurochkin Y V 2021 J. Phys.: Conf. Ser. 2086 012098
[9] Ceylan O and Yilmaz I 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1187 012020
[10] Zhu Q, Yu X, Zhao Y, Nag A and Zhang J 2024 IEEE Transactions on Network Science and Engineering 11 2153
[11] Olszewski I and Szczésniak I 2022 Entropy 24 891
[12] Yang J W and Yang Y 2021 J. Phys.: Conf. Ser. 2132 012020
[13] Chen Q H, Zhao Y, Li C and Li X 2023 New J. Phys. 25 113045
[14] Liu H, Huo X, Chen Y, Qiu Y, Chen H, Chen X and Zhang J 2024 Journal of Lightwave Technology 42 5800
[15] Gerstel O and Ramaswami R 2000 IEEE Journal on Selected Areas in Communications 18 1885
[16] Somani A K and Vaidya N H 1997 IEEE Computer 30 45
[17] Guo L, Cao J, Yu H and Li L 2006 Journal of Lightwave Technology 24 1129
[18] Wei D, Guo Y and Luo J W 2021 J. Phys.: Conf. Ser. 1856 012044
[19] He B, Ma W K, Chen H, Shao W D, Gao M Y, Chen B W and Wu J B 2022 Asia Communications and Photonics Conference (ACP), 05-08 November 2022 Shenzhen China pp. 1196-1198
[20] Wang Y H, Yu X S, Li J C, Zhao Y L, Zhou X T, Xie S M L and Zhang J 2019 Asia Communications and Photonics Conference (ACP), 02-05 November 2019 Chengdu, China, pp. 1-3
[21] He B, Lu Y X, Chen H, Shao W D, Jiang M, Zhou L L, Chen B W and Ju W G 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), 04-07 November 2023 Wuhan, China, pp. 1-3
[22] Zhang P and Mao X J 2020 J. Phys.: Conf. Ser. 1621 012017
[23] Kravtsov K S 2023 Laser Phys. Lett. 20 085203
[24] Lasota M, Kovalenko O and Usenko V C 2023 New J. Phys. 25 123003
[25] Reutov A, Tayduganov A, Mayboroda V and Fat’yanov O 2023 Entropy 25 1556
[26] Zheng Y, Shi H B, Pan W, Wang Q T and Mao J H 2022 Entropy 24 127
[27] Xu S J, Li Y, Wang Y J, Mao Y, Wu X D and Guo Y 2021 Entropy 23 1698
[28] Sharma P, Bhatia V and Prakash S 2020 IEEE International Confer ence on Advanced Networks and Telecommunications Systems (ANTS), 14-17 December 2020 New Delhi, India, pp. 1-6
[29] Wen B, Shenai R and Sivalingam K 2005 Journal of Lightwave Technology 23 2598
[30] Wen B and Sivalingam K M 2002 Proceedings. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, 23-27 June 2002 New York, NY, USA, pp. 1442-1450
[31] Cao Y, Zhao Y L, Yu X S and Wu Y 2017 Journal of Optical Communications and Networking 9 995
[32] Cui W, Yang C, Huang G Q and Jiao R Z 2024 Phys. Scr. 99 085112
[33] Ma W K, Chen B W, Liu L, Chen H, Shao W D, Gao M Y, Wu J B and Ho P H 2022 IEEE Internet of Things Journal 9 25660
[34] Yang C and Jiao R Z 2025 Phys. Scr. 100 045106
[35] Ma H Q, Han Y X, Dou T Q and Li P Y 2023 Chin. Phys. B 32 020304
[36] Sych D, Duplinskiy A and Babukhin D 2021 J. Phys.: Conf. Ser. 1984 012001
[37] Navarrete A and Curty M 2022 Quantum Sci. Technol. 7 035021
[38] Feng B, Huang H D, Bian Y X, Jia W, Zhou X Y and Wang Q 2023 Chin. Phys. B 32 030307
[39] Cui W, Yang C, Huang G Q and Jiao R Z 2024 Phys. Scr. 99 085112
[40] Sun S J, Wang J P, Su D and Ma H Q 2022 J. Phys.: Conf. Ser. 2381 012082
[41] Sun Z Q, Han Y X, Dou T Q, Wang J P, Li Z H, Zhou F, Huang Y Q and Ma H Q 2021 Chin. Phys. B 30 110303
[42] Kiselev F, Veselkova N, Goncharov R and Egorov V 2021 J. Phys. B: At. Mol. Opt. Phys. 54 135502
[43] Harkness A, KrawecWO andWang B 2025 Quantum Sci. Technol. 10 015005
[44] Ma W, Liu L, Chen B, Gao M Y, Chen H and Wu J B 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 24-27 October 2020 Beijing, China pp. 1-3 h
[45] Doai R, Hayashi R, Matsukawa T, Seki T, Miyamura T and Kawabata A 2025 IEICE Communications Express 14 2187
[46] Sharma P, Bhatia V and Prakash S 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 14-17 December 2020 New Delhi, India, pp. 1-6
[47] Cao Y, Zhao Y L, Yu X S, Wang H, Liu C, Li B L and Zhang J 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), 31 July 2017-04 August 2017 Singapore, pp. 1-3
[48] Gowda S and Sivalingam K M IEEE INFOCOM 2003 Twenty second Annual Joint Conference of the IEEE Computer and Communi cations Societies, 30 March 2003-03 April 2003 San Francisco, CA, USA pp. 12-21
[1] Multi-protocol quantum key distribution decoding chip
Chun-Xue Zhang(张春雪), Jian-Guang Li(李建光), Yue Wang(王玥), Wei Chen(陈巍), Jia-Shun Zhang(张家顺), and Jun-Ming An(安俊明). Chin. Phys. B, 2025, 34(5): 050303.
[2] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[3] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[4] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[5] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[6] A cost-effective structure of a centralized-light-source WDM-PON utilizing inverse-duobinary-RZ downstream and DPSK upstream
Chen Long-Quan (陈龙泉), Qiao Yao-Jun (乔耀军), Ji Yue-Feng (纪越峰). Chin. Phys. B, 2013, 22(5): 054201.
No Suggested Reading articles found!