Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090307    DOI: 10.1088/1674-1056/adf4a9
Special Issue: SPECIAL TOPIC — Quantum communication and quantum network
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Mode-pairing quantum key distribution with multi-step advantage distillation

Shizhuo Li(李世卓)1, Xin Liu(刘馨)1, Zhenrong Zhang(张振荣)2, and Kejin Wei(韦克金)1,†
1 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
2 Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer Electronics and Information, Guangxi University, Nanning 530004, China
Abstract  The advantage distillation (AD) technology has been proven to effectively improve the secret key rate and the communication distance of quantum key distribution (QKD). The mode-pairing quantum key distribution (MP-QKD) protocol can overcome a fundamental physical limit, known as the Pirandola-Laurenza-Ottaviani-Banchi bound, without requiring global phase-locking. In this work, we propose a method based on multi-step AD to further enhance the performance of MP-QKD. The simulation results show that, compared to one-step AD, multi-step AD achieves better performance in long-distance scenarios and can tolerate a higher quantum bit error rate. Specifically, when the difference between the communication distances from Alice and Bob to Charlie is 25 km, 50 km and 75 km, and the corresponding transmission distance exceeds 523 km, 512 km and 496 km, respectively, the secret key rate achieved by multi-step AD surpasses that of one-step AD. Our findings indicate that the proposed method can effectively promote the application of MP-QKD in scenarios with high loss and high error rate.
Keywords:  mode-pairing quantum key distribution      multi-step advantage distillation      secret key rate  
Received:  09 June 2025      Revised:  17 July 2025      Accepted manuscript online:  28 July 2025
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: This study was supported by the National Natural Science Foundation of China (Grant Nos. 62171144 and 62031024), Guangxi Science Foundation (Grant Nos. 2025GXNSFAA069137 and GXR-1BGQ2424005), and Innovation Project of Guangxi Graduate Education (Grant No. YCBZ2025064).
Corresponding Authors:  Kejin Wei     E-mail:  kjwei@gxu.edu.cn

Cite this article: 

Shizhuo Li(李世卓), Xin Liu(刘馨), Zhenrong Zhang(张振荣), and Kejin Wei(韦克金) Mode-pairing quantum key distribution with multi-step advantage distillation 2025 Chin. Phys. B 34 090307

[1] Shor P W 1994 Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (IEEE, New York) pp. 124-134
[2] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y and An J M 2023 Chin. Phys. B 32 124207
[3] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York) pp. 175-179
[4] Wei K, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F and Pan J W 2020 Phys. Rev. X 10 031030
[5] Grünenfelder F, Boaron A, Resta G V, Perrenoud M, Rusca D, Barreiro C, Houlmann R, Sax R, Stasi L, El-Khoury S, Hänggi E, Bosshard N, Bussières F and Zbinden H 2023 Nat. Photon. 17 422
[6] Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, et al. 2023 Nat. Photon. 17 416
[7] Zhang L, Li W, Pan J, Lu Y, Li W, Li Z P, Huang Y, Ma X, Xu F and Pan J W 2025 Phys. Rev. X 15 021037
[8] Shao S F, Zhou L, Lin J, Minder M, Ge C, Xie Y M, Shen A, Yan Z, Yin H L and Yuan Z 2025 Phys. Rev. X 15 021066
[9] Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, et al. 2022 Nat. Photon. 16 154
[10] Zhou L, Lin J, Xie Y M, Lu Y S, Jing Y, Yin H L and Yuan Z 2023 Phys. Rev. Lett. 130 250801
[11] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801
[12] Li Y, CaiWQ, Ren J G,Wang C Z, Yang M, Zhang L,Wu H Y, Chang L, Wu J C, Jin B, et al. 2025 Nature 640 47
[13] Beutel F, Brückerhoff-Plückelmann F, Gehring H, Kovalyuk V, Zolotov P, Goltsman G and Pernice W H P 2022 Optica 9 1121
[14] Wei K, Hu X, Du Y, Hua X, Zhao Z, Chen Y, Huang C and Xiao X 2023 Photon. Res. 11 1364
[15] Du Y, Li B H, Hua X, Cao X Y, Zhao Z, Xie F, Zhang Z, Yin H L, Xiao X and Wei K 2025 Light Sci. Appl. 14 108
[16] Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z,Wang J Y, Zeilinger A and Pan J W 2018 Phys. Rev. Lett. 120 030501
[17] Avesani M, Foletto G, Padovan M, Calderaro L, Agnesi C, Bazzani E, Berra F, Bertapelle T, Picciariello F, Santagiustina F B L, Scalcon D, Scriminich A, Stanco A, Vedovato F, Vallone G and Villoresi P 2022 J. Lightwave Technol. 40 1658
[18] Fitzke E, Bialowons L, Dolejsky T, Tippmann M, Nikiforov O,Walther T, Wissel F and Gunkel M 2022 PRX Quantum 3 020341
[19] Huang C, Chen Y, Luo T, He W, Liu X, Zhang Z and Wei K 2024 Sci. China-Phys. Mech. Astron. 67 240312
[20] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[21] Pirandola S, Laurenza R, Ottaviani C and Banchi L 2017 Nat. Commun. 8 1
[22] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[23] Ma X, Zeng P and Zhou H 2018 Phys. Rev. X 8 031043
[24] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[25] Chistiakov V, Kozubov A, Gaidash A, Gleim A and Miroshnichenko G 2019 Opt. Express 27 36551
[26] Cui C, Yin Z Q,Wang R, ChenW,Wang S, Guo G C and Han Z F 2019 Phys. Rev. Appl. 11 034053
[27] Zhang C M, Xu Y W, Wang R and Wang Q 2020 Phys. Rev. Appl. 14 064070
[28] Zhou L, Lin J, Jing Y and Yuan Z 2023 Nat. Commun. 14 928
[29] Ma H, Han Y, Dou T and Li P 2023 Chin. Phys. B 32 020304
[30] Zhong X, Hu J, Curty M, Qian L and Lo H K 2019 Phys. Rev. Lett. 123 100506
[31] Pittaluga M, Minder M, Lucamarini M, Sanzaro M, Woodward R I, Li M J, Yuan Z and Shields A J 2021 Nat. Photon. 15 530
[32] Clivati C, Meda A, Donadello S, Virzì S, Genovese M, Levi F, Mura A, Pittaluga M, Yuan Z, Shields A J, et al. 2022 Nat. Commun. 13 157
[33] Li W, Zhang L, Lu Y, Li Z P, Jiang C, Liu Y, Huang J, Li H, Wang Z, Wang X B, Zhang Q, You L, Xu F and Pan J W 2023 Phys. Rev. Lett. 130 250802
[34] Chen J P, Zhou F, Zhang C, Jiang C, Chen F X, Huang J, Li H, You L X, Wang X B, Liu Y, Zhang Q and Pan J W 2024 Phys. Rev. Lett. 132 260802
[35] Fang X T, Zeng P, Liu H, Zou M, Wu W, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, et al. 2020 Nat. Photon. 14 422
[36] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, et al. 2021 Nat. Photon. 15 570
[37] Du H, Paraiso T K, Pittaluga M, Lo Y S, Dolphin J A and Shields A J 2024 Optica 11 1385
[38] Zeng P, Zhou H, Wu W and Ma X 2022 Nat. Commun. 13 1
[39] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315
[40] Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y and Pan J W 2023 Phys. Rev. Lett. 130 030801
[41] Zhu H T, Huang Y, Pan W X, Zhou C W, Tang J, He H, Cheng M, Jin X, Zou M, Tang S, Ma X, Chen T Y and Pan J W 2024 Optica 11 883
[42] Li Z, Dou T, Cheng M, Liu Y and Tang J 2024 Opt. Lett. 49 6609
[43] Wang Z H, Wang R, Yin Z Q, Wang S, Lu F Y, Chen W, He D Y, Guo G C and Han Z F 2023 Commun. Phys. 6 265
[44] Liu X, Luo D, Zhang Z and Wei K 2023 Phys. Rev. A 107 062613
[45] Lu Z, Wang G, Li C and Cao Z 2024 Phys. Rev. A 109 012401
[46] Cui W, Yang C, Huang G and Jiao R 2024 Phys. Scr. 99 085112
[47] Luo D, Liu X, Qin K, Zhang Z and Wei K 2024 Phys. Rev. A 110 022605
[48] Zhou X Y, Hu J R, Zhang C H and Wang Q 2025 Opt. Lett. 50 249
[49] Lu Y F, Wang Y, Li H W, Jiang M S, Zhang X X, Zhang Y Y, Zhou Y, Jiang X L, Wang H T, Zhao Y M, Zhou C and Bao W S 2025 Phys. Rev. Res. 7 023102
[50] Li C L, Yin H L and Chen Z B 2024 Rep. Prog. Phys. 87 127901
[51] Lu Y S, Yin H L, Xie Y M, Fu Y and Chen Z B 2025 Rep. Prog. Phys. 88 067901
[52] Wang W, Xu F and Lo H K 2019 Phys. Rev. X 9 041012
[53] Jiang C, Hu X L, Yu Z W and Wang X B 2022 Photon. Res. 10 1703
[54] Liu X, Luo D, Luo Z, Li S, Zhang Z and Wei K 2024 Phys. Rev. Appl. 22 064018
[55] Maurer U 1993 IEEE Trans. Inf. Theory 39 733
[56] Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457
[57] Ma X, Fung C H F, Dupuis F, Chen K, Tamaki K and Lo H K 2006 Phys. Rev. A 74 032330
[58] Khatri S and Lütkenhaus N 2017 Phys. Rev. A 95 042320
[59] Tan E Y Z, Lim C CWand Renner R 2020 Phys. Rev. Lett. 124 020502
[60] Li H W, Zhang C M, Jiang M S and Cai Q Y 2022 Commun. Phys. 5 53
[61] Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C and Han Z F 2022 New J. Phys. 24 073049
[62] Hu L W, Zhang C M and Li H W 2023 Quantum Inf. Process. 22 77
[63] Zhou Y, Wang R Q, Zhang C M, Yin Z Q, Wang Z H, Wang S, Chen W, Guo G C and Han Z F 2024 Phys. Rev. Appl. 21 014036
[64] Zhang C M, Wang Z, Wu Y D, Zhu J R, Wang R and Li H W 2024 Phys. Rev. A 109 052432
[65] Wang H T, Zhou C, Lu Y F, Hao C P, Zhao Y M, Zhou Y Y, Li H W and Bao W S 2025 Chin. Phys. B 34 040305
[66] Hao C P, Liu Y, Wang Y, Zhou C, Zhou Y Y, Bao W S and Li H W 2024 Quantum Inf. Process. 23 148
[67] Li Y H, Li S L, Hu X L, Jiang C, Yu Z W, Li W, Liu W Y, Liao S K, Ren J G, Li H, You L, Wang Z, Yin J, Xu F, Zhang Q, Wang X B, Cao Y, Peng C Z and Pan J W 2023 Phys. Rev. Lett. 131 100802
[68] Du Z, Liu G, Zhang X and Ma X 2024 Quantum Sci. Technol. 10 015050
[69] Ma X and Razavi M 2012 Phys. Rev. A 86 062319
[70] Renner R 2008 Int. J. Quantum Inf. 6 1
[71] Li H W, Chen W, Huang J Z, Yao Y, Liu D, Li F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Li Y H, Yu N H and Han Z F 2012 Sci. Sin.: Phys. Mech. Astron. 42 1237
[1] Mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states
Zhigang Shen(沈志冈), Yuting Lu(鲁雨婷), Yang Yu(余杨), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2025, 34(9): 090304.
[2] Free-space discrete-variable quantum key distribution in a mountainous environment
Xing-Ran Chen(陈星燃), Jian-Hong Shi(史建红), and Hai-Long Zhang(张海龙). Chin. Phys. B, 2025, 34(5): 050301.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[5] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[6] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[7] Security of a practical semi-device-independent quantum key distribution protocol against collective attacks
Wang Yang (汪洋), Bao Wan-Su (鲍皖苏), Li Hong-Wei (李宏伟), Zhou Chun (周淳), Li Yuan (李源). Chin. Phys. B, 2014, 23(8): 080303.
No Suggested Reading articles found!