Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104203    DOI: 10.1088/1674-1056/ab3e66
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution

Yi-Bo Zhao(赵义博)1,2, Wan-Li Zhang(张万里)1,2, Dong Wang(王东)1,2, Xiao-Tian Song(宋萧天)1,2, Liang-Jiang Zhou(周良将)1,2,3, Chi-Biao Ding(丁赤飚)1,2,3
1 National Key Laboratory of Microwave Imaging Technology, Beijing 100190, China;
2 Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We present a quantum secure imaging (QSI) scheme based on the phase encoding and weak+vacuum decoy-state BB84 protocol of quantum key distribution (QKD). It allows us to implement a computational ghost imaging (CGI) system with more simplified equipment and reconstructed algorithm by using a digital micro-mirror device (DMD) to preset the specific spatial distribution of the light intensity. What is more, the quantum bit error rate (QBER) and the secure key rate analytical functions of QKD are used to see through the intercept-resend jamming attacks and ensure the authenticity of the imaging information. In the experiment, we obtained the image of the object quickly and efficiently by measuring the signal photon counts with a single-photon detector (SPD), and achieved a secure key rate of 571.0 bps and a secure QBER of 3.99%, which is well below the lower bound of QBER of 14.51%. Besides, our imaging system uses a laser with invisible wavelength of 1550 nm, whose intensity is as low as single-photon, that can realize weak-light imaging and is immune to the stray light or air turbulence, thus it will become a better choice for quantum security radar against intercept-resend jamming attacks.

Keywords:  quantum secure imaging (QSI)      quantum key distribution (QKD)      digital micro-mirror device (DMD)      quantum bit error rate (QBER)  
Received:  05 June 2019      Revised:  15 August 2019      Accepted manuscript online: 
PACS:  42.30.Va (Image forming and processing)  
  03.67.Dd (Quantum cryptography and communication security)  
Corresponding Authors:  Liang-Jiang Zhou     E-mail:  ljzhou@mail.ie.ac.cn

Cite this article: 

Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚) Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution 2019 Chin. Phys. B 28 104203

[1] Zhang J D, Zhu D Y and Zhang G 2013 IEEE Trans. Aerosp. Electron. Syst. 49 1290
[2] Butt F A, Naqvi I H and Najam A I 2012 Proceedings of 2012 15th International Multitopic Conference (INMIC), December 13-15, 2012, Islamabad, Pakistan, p. 137
[3] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[4] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[5] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[6] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[7] Zhang P L, Gong W L, Shen X and Han S S 2010 Phys. Rev. A 82 033817
[8] Malik M, Maga? na-Loaiza O S and Boyd R W 2012 Appl. Phys. Lett. 101 241103
[9] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[10] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[11] Valencia A, Scarcelli G, D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[12] Xiong J, Cao D Z, Huang F, Li H G, Sun X J and Wang K G 2004 Phys. Rev. Lett. 94 173601
[13] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[14] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[15] Zhang M H, Wei Q, Shen X, Liu Y F, Liu H L, Chen J and Han S S 2007 Phys. Rev. A 75 021803
[16] Si Y, Kong L J, Li Y N, Tu C H and Wang H T 2016 Chin. Phys. Lett. 33 034203
[17] Li H X, Bai Y F, Shi X H, Nan S Q, Qu L J, Shen Q and Fu X Q 2017 Chin. Phys. B 26 104204
[18] Luo B, Wu G H and Yin L F 2018 Chin. Phys. B 27 094202
[19] Shapiro J H 2008 Phys. Rev. A 78 061802
[20] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[21] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[22] Khamoushi S M M, Nosrati Y and Tavassoli S H 2015 Opt. Lett. 40 3452
[23] Shapiro J H 2007 Proceedings of SPIE 6603 Noise and Fluctuations in Photonics, Quantum Optics, and Communications, June 7, 2007, Florence, Italy, p. 660306
[24] Jiang K B, Lee H, Gerry C C and Dowling J P 2013 J. Appl. Phys. 114 193102
[25] Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[26] Lo H K and Chau H F 1999 Science 283 2050
[27] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[28] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[29] Curty M and Lütkenhaus N 2005 Phys. Rev. A 71 062301
[30] Bai B, He Y C, Liu J B, Zhou Y, Zheng H B, Zhang S L and Xu Z 2017 Optik 147 136
[31] Dupuis J R and Mansur D J 2012 Proceedings of Emerging Digital Micromirror Device Based Systems and Applications IV, February 13, 2012, San Francisco, California, United States, p. 82540J
[1] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
No Suggested Reading articles found!