Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 105202    DOI: 10.1088/1674-1056/ade069
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Quantified causality dependence of dynamical relation between zonal flow and heat transport on isotope mass in tokamak edge plasmas

Yu He(何钰)1, Zhongbing Shi(石中兵)1,†, Yuhong Xu(许宇鸿)2, Jun Cheng(程钧)2, Jianqiang Xu(许健强)1, Zhihui Huang(黄治辉)1, Na Wu(吴娜)1, Kaiyang Yi(弋开阳)1, Weice Wang(王威策)1, Min Jiang(蒋敏)1, Longwen Yan(严龙文)1, Xiaoquan Ji(季小全)1, and Wulyu Zhong(钟武律)1
1 Southwestern Institute of Physics, Chengdu 610041, China;
2 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  The isotope effect on zonal flows (ZFs) and turbulence remains a key issue that is not completely solved in fusion plasmas. This paper presents the first experimental results of the ab initio prediction of causal relation between geodesic acoustic mode (GAM) and ambient turbulence at different isotope masses in the edge of HL-2A tokamak, where transfer entropy method based on information-theoretical approach is utilized as a quantified indicator of causality. Analysis shows that GAM is more pronounced in deuterium plasmas than in hydrogen, leading to a lower heat transport as well as more peaked profiles in the former situation. The causal impact of GAM on conductive heat flux component is stronger than on the convective component, which is resulted from a larger causal influence of zonal flow on temperature fluctuation. While a stronger GAM in deuterium plasmas has larger influence on all flux components, the relative change in temperature fluctuation and coefficient is more obvious when the ion mass varies. These findings not only offer an in-depth understanding of the real causality between zonal flow and turbulence in the present isotope experiments, but also provide useful ways for the physical understandings of transport and zonal flow dynamics in future deuterium-tritium fusion plasmas.
Keywords:  isotope effect      zonal flow      heat transport      causality  
Received:  27 March 2025      Revised:  13 May 2025      Accepted manuscript online:  04 June 2025
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.-s (Magnetic confinement and equilibrium)  
  96.50.Tf (MHD waves; plasma waves, turbulence)  
  52.35.Kt (Drift waves)  
Fund: The authors thank to the HL-2A team for their operational assistance in the experiments. Project supported by the National MCF Energy Research and Development Program (Grant Nos. 2024YFE03190001, 2024YFE03190004, 2022YFE03030001, and 2019YFE03030002), the National Natural Science Foundation of China (Grant Nos. 12405257, 12475215, and 12475219), the Natural Science Foundation of Sichuan Province, China (Grant Nos. 2023NSFSC1289 and 2025ZNSFSC0066), the Nuclear Technology Research and Development Program (Grant No. HJSYF2024(02)), and the Innovation Program of Southwestern Institute of Physics (Grant No. 202301XWCX001).
Corresponding Authors:  Zhongbing Shi     E-mail:  shizb@swip.ac.cn

Cite this article: 

Yu He(何钰), Zhongbing Shi(石中兵), Yuhong Xu(许宇鸿), Jun Cheng(程钧), Jianqiang Xu(许健强), Zhihui Huang(黄治辉), Na Wu(吴娜), Kaiyang Yi(弋开阳), Weice Wang(王威策), Min Jiang(蒋敏), Longwen Yan(严龙文), Xiaoquan Ji(季小全), and Wulyu Zhong(钟武律) Quantified causality dependence of dynamical relation between zonal flow and heat transport on isotope mass in tokamak edge plasmas 2025 Chin. Phys. B 34 105202

[1] Bessenrodt-Weberpals M, Wagner F, Gehre O, Giannone L, Hofmann J V, Kallenbach A, Mccormick K, Mertens V, Murmann H D, Ryter F, Scott B D, Siller G, Soldner F X, Stabler A, Steuer K H, Stroth U, Tsois N, Verbeek H and Zoohm H 1993 Nucl. Fusion 33 1205
[2] Manfredi G and Ottaviani M 1997 Phys. Rev. Lett. 79 4190
[3] Saibene G, Horton L D, Sartori R, Balet B, Clement S, Conway G D, Cordey J G, Esch H P L D, Ingesson L C, Lingertat J, Monk R D, Parail V V, Smith R J, Taroni A, Thomsen K and Hellermann M G V 1999 Nucl. Fusion 39 1133
[4] Bose T and Sen A K 2001 Phys. Plasmas 8 4690
[5] Ida K 2023 Rev. Mod. Plasma Phys. 7 23
[6] Yamada H, Tanaka K, Seki R, Suzuki C, Ida K, Fujii K, Goto M, Murakami S, Osakabe M, Tokuzawa T, Yokoyama M, Yoshinuma M and Group L E 2019 Phys. Rev. Lett. 123 185001
[7] Liu B, Pedrosa M A, Van Milligen B P, Hidalgo C, Silva C, Tabarés F L, Zurro B, Mccarthy K J, Cappa A and Liniers M 2015 Nucl. Fusion 55 112002
[8] Lorenzini R and Gobbin M 2021 Plasma Phys. Control. Fusion 63 114005
[9] Maggi C F,Weisen H, Casson F J, Auriemma F, Lorenzini R, Nordman H, Delabie E, Eriksson F, Flanagan J, Keeling D, King D, Horvath L, Menmuir S, Salmi A, Sips G, Tala T and Voitsekhovich I 2019 Nucl. Fusion 59 076028
[10] Hahm T S, Lu W, Wang W X, Yoon E S and Duthoit F X 2013 Nucl. Fusion 53 072002
[11] Watanabe T H, Sugama H and Nunami M 2011 Nucl. Fusion 51 123003
[12] Garcia J, Görler T, Jenko F and Giruzzi G 2017 Nucl. Fusion 57 014007
[13] Diamond P H, Itoh S I, Itoh K and Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35
[14] Itoh K, Itoh S I, Diamond P H, Hahm T S, Fujisawa A, Tynan G R, Yagi M and Nagashima Y 2006 Phys. Plasmas 13 055502
[15] Fujisawa A 2009 Nucl. Fusion 49 013001
[16] Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998 Science 281 1835
[17] Fujisawa A, Itoh K, Iguchi H, Matsuoka K, Okamura S, Shimizu A, Minami T, Yoshimura Y, Nagaoka K, Takahashi C, Kojima M, Nakano H, Ohsima S, Nishimura S, Isobe M, Suzuki C, Akiyama T, Ida K, Toi K, Itoh S I and Diamond P H 2004 Phys. Rev. Lett. 93 165002
[18] Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
[19] Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y and Pan C H 2006 Phys. Rev. Lett. 96 255004
[20] Conway G D, Smolyakov A I and Ido T 2022 Nucl. Fusion 62 013001
[21] Xu Y, Hidalgo C, Shesterikov I, Krämer-Flecken A, Zoletnik S, Schoor M V, Vergote M and Team T T 2013 Phys. Rev. Lett. 110 265005
[22] Xu M, Duan X R, Liu Y, et al. 2019 Nucl. Fusion 59 112017
[23] Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L and Yang Q W 2008 Phys. Plasmas 15 056105
[24] Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L and Yang Q W 2008 Plasma Phys. Control. Fusion 50 045002
[25] Liu A D, Lan T, Yu C X, Zhao H L, Yan L W, Hong W Y, Dong J Q, Zhao K J, Qian J, Cheng J, Duan X R and Liu Y 2009 Phys. Rev. Lett. 103 095002
[26] Demidov V I, Ratynskaia S V and Rypdal K 2002 Rev. Sci. Instrum. 73 3409
[27] Zhong W L, Shi Z B, Xu Y, Zou X L, Duan X R, Chen W, Jiang M, Yang Z C, Zhang B Y, Shi P W, Liu Z T, Xu M, Song X M, Cheng J, Ke R, Nie L, Cui Z Y, Fu B Z, Ding X T, Dong J Q, Yi L, Yan L W, Yang Q W, Liu Y and Team H A 2015 Nucl. Fusion 55 113005
[28] He Y, Cheng J, Xu Y, Fang Q, Li Y, Xu J, Wang W, Yan L, Huang Z, Wu N, Jiang M, Shi Z, Liu Y, Zhong W and Xu M 2022 Plasma Sci. Technol. 24 095102
[29] Powers E J 1974 Nucl. Fusion 14 749
[30] Hlaváčková-Schindler K, Paluš M, Vejmelka M and Bhattacharya J 2007 Phys. Rep. 441 1
[31] Schreiber T 2000 Phys. Rev. Lett. 85 461
[32] Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier J T and Vicente R 2013 PLoS One 8 e55809
[33] Van Milligen B P, Birkenmeier G, Ramisch M, Estrada T, Hidalgo C and Alonso A 2014 Nucl. Fusion 54 023011
[34] Van Milligen B P, Carreras B A, Voldiner I, Losada U, Hidalgo C and Team T I 2021 Phys. Plasmas 28 092302
[35] Van Milligen B P, Estrada T, Carreras B A, Ascasíbar E, Hidalgo C, Pastor I, Fontdecaba J M, Balbín R and Team T I 2016 Phys. Plasmas 23 072305
[36] Xu J Q, Qu Y R, Li J C, Lin Z, Dong J Q, Peng X D, Jiang M, Qu H P, Huang Z H, Wu N, Wang W C, Hao G Z, Chen W, Li J Q and Xu M 2022 Nucl. Fusion 62 086048
[37] Mckee G R, Gupta D K, Fonck R J, Schlossberg D J, Shafer M W and Gohil P 2006 Plasma Phys. Control. Fusion 48 S123
[38] Hillesheim J C, Peebles W A, Carter T A, Schmitz L and Rhodes T L 2012 Phys. Plasmas 19 022301
[39] Gao Z 2013 Phys. Plasmas 20 032501
[1] Theory and applications of attosecond transient absorption spectroscopy: From atoms to solids
Ennan Cui and Difa Ye(叶地发). Chin. Phys. B, 2025, 34(7): 073201.
[2] Causally enhanced initial conditions: A novel soft constraints strategy for physics informed neural networks
Wenshu Zha(查文舒), Dongsheng Chen(陈东升), Daolun Li(李道伦), Luhang Shen(沈路航), and Enyuan Chen(陈恩源). Chin. Phys. B, 2025, 34(4): 040701.
[3] Vibronic effect study of 1A2 state of H2O and D2O
Bei-Yuan Zhang(张倍源), Li-Han Wang(王礼涵), Jian-Hui Zhu(朱剑辉), Wei-Qing Xu(徐卫青), Zi-Ru Ma(马子茹), Xiao-Li Zhao(赵小利), Yong Wu(吴勇), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2024, 33(5): 053401.
[4] TCAS-PINN: Physics-informed neural networks with a novel temporal causality-based adaptive sampling method
Jia Guo(郭嘉), Haifeng Wang(王海峰), Shilin Gu(古仕林), and Chenping Hou(侯臣平). Chin. Phys. B, 2024, 33(5): 050701.
[5] Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
Lei Huang(黄磊), Kai Ren(任凯), Huanping Zhang(张焕萍), and Huasong Qin(覃华松). Chin. Phys. B, 2023, 32(7): 076103.
[6] First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利). Chin. Phys. B, 2023, 32(10): 107401.
[7] The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge
Zhao-Yang Liu(刘朝阳), Yang-Zhong Zhang(章扬忠), Swadesh Mitter Mahajan, A-Di Liu(刘阿娣), Chu Zhou(周楚), and Tao Xie(谢涛). Chin. Phys. B, 2022, 31(4): 045202.
[8] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[9] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[10] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[11] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[12] The interaction between zonal flow and Rossby waves with scalar nonlinearity
Zhang Xi-Ping (张喜平), Zhao Qiang (赵强). Chin. Phys. B, 2014, 23(6): 064703.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Numerical demonstration of three-dimensional terahertz metamaterials based on the causality principle
Saeid Jamilan, Javad Nourinia, Mohammad Naghi Azarmanesh. Chin. Phys. B, 2014, 23(2): 027804.
[15] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
No Suggested Reading articles found!