| PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Quantified causality dependence of dynamical relation between zonal flow and heat transport on isotope mass in tokamak edge plasmas |
| Yu He(何钰)1, Zhongbing Shi(石中兵)1,†, Yuhong Xu(许宇鸿)2, Jun Cheng(程钧)2, Jianqiang Xu(许健强)1, Zhihui Huang(黄治辉)1, Na Wu(吴娜)1, Kaiyang Yi(弋开阳)1, Weice Wang(王威策)1, Min Jiang(蒋敏)1, Longwen Yan(严龙文)1, Xiaoquan Ji(季小全)1, and Wulyu Zhong(钟武律)1 |
1 Southwestern Institute of Physics, Chengdu 610041, China; 2 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China |
|
|
|
|
Abstract The isotope effect on zonal flows (ZFs) and turbulence remains a key issue that is not completely solved in fusion plasmas. This paper presents the first experimental results of the ab initio prediction of causal relation between geodesic acoustic mode (GAM) and ambient turbulence at different isotope masses in the edge of HL-2A tokamak, where transfer entropy method based on information-theoretical approach is utilized as a quantified indicator of causality. Analysis shows that GAM is more pronounced in deuterium plasmas than in hydrogen, leading to a lower heat transport as well as more peaked profiles in the former situation. The causal impact of GAM on conductive heat flux component is stronger than on the convective component, which is resulted from a larger causal influence of zonal flow on temperature fluctuation. While a stronger GAM in deuterium plasmas has larger influence on all flux components, the relative change in temperature fluctuation and coefficient is more obvious when the ion mass varies. These findings not only offer an in-depth understanding of the real causality between zonal flow and turbulence in the present isotope experiments, but also provide useful ways for the physical understandings of transport and zonal flow dynamics in future deuterium-tritium fusion plasmas.
|
Received: 27 March 2025
Revised: 13 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
| |
52.55.-s
|
(Magnetic confinement and equilibrium)
|
| |
96.50.Tf
|
(MHD waves; plasma waves, turbulence)
|
| |
52.35.Kt
|
(Drift waves)
|
|
| Fund: The authors thank to the HL-2A team for their operational assistance in the experiments. Project supported by the National MCF Energy Research and Development Program (Grant Nos. 2024YFE03190001, 2024YFE03190004, 2022YFE03030001, and 2019YFE03030002), the National Natural Science Foundation of China (Grant Nos. 12405257, 12475215, and 12475219), the Natural Science Foundation of Sichuan Province, China (Grant Nos. 2023NSFSC1289 and 2025ZNSFSC0066), the Nuclear Technology Research and Development Program (Grant No. HJSYF2024(02)), and the Innovation Program of Southwestern Institute of Physics (Grant No. 202301XWCX001). |
Corresponding Authors:
Zhongbing Shi
E-mail: shizb@swip.ac.cn
|
Cite this article:
Yu He(何钰), Zhongbing Shi(石中兵), Yuhong Xu(许宇鸿), Jun Cheng(程钧), Jianqiang Xu(许健强), Zhihui Huang(黄治辉), Na Wu(吴娜), Kaiyang Yi(弋开阳), Weice Wang(王威策), Min Jiang(蒋敏), Longwen Yan(严龙文), Xiaoquan Ji(季小全), and Wulyu Zhong(钟武律) Quantified causality dependence of dynamical relation between zonal flow and heat transport on isotope mass in tokamak edge plasmas 2025 Chin. Phys. B 34 105202
|
[1] Bessenrodt-Weberpals M, Wagner F, Gehre O, Giannone L, Hofmann J V, Kallenbach A, Mccormick K, Mertens V, Murmann H D, Ryter F, Scott B D, Siller G, Soldner F X, Stabler A, Steuer K H, Stroth U, Tsois N, Verbeek H and Zoohm H 1993 Nucl. Fusion 33 1205 [2] Manfredi G and Ottaviani M 1997 Phys. Rev. Lett. 79 4190 [3] Saibene G, Horton L D, Sartori R, Balet B, Clement S, Conway G D, Cordey J G, Esch H P L D, Ingesson L C, Lingertat J, Monk R D, Parail V V, Smith R J, Taroni A, Thomsen K and Hellermann M G V 1999 Nucl. Fusion 39 1133 [4] Bose T and Sen A K 2001 Phys. Plasmas 8 4690 [5] Ida K 2023 Rev. Mod. Plasma Phys. 7 23 [6] Yamada H, Tanaka K, Seki R, Suzuki C, Ida K, Fujii K, Goto M, Murakami S, Osakabe M, Tokuzawa T, Yokoyama M, Yoshinuma M and Group L E 2019 Phys. Rev. Lett. 123 185001 [7] Liu B, Pedrosa M A, Van Milligen B P, Hidalgo C, Silva C, Tabarés F L, Zurro B, Mccarthy K J, Cappa A and Liniers M 2015 Nucl. Fusion 55 112002 [8] Lorenzini R and Gobbin M 2021 Plasma Phys. Control. Fusion 63 114005 [9] Maggi C F,Weisen H, Casson F J, Auriemma F, Lorenzini R, Nordman H, Delabie E, Eriksson F, Flanagan J, Keeling D, King D, Horvath L, Menmuir S, Salmi A, Sips G, Tala T and Voitsekhovich I 2019 Nucl. Fusion 59 076028 [10] Hahm T S, Lu W, Wang W X, Yoon E S and Duthoit F X 2013 Nucl. Fusion 53 072002 [11] Watanabe T H, Sugama H and Nunami M 2011 Nucl. Fusion 51 123003 [12] Garcia J, Görler T, Jenko F and Giruzzi G 2017 Nucl. Fusion 57 014007 [13] Diamond P H, Itoh S I, Itoh K and Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35 [14] Itoh K, Itoh S I, Diamond P H, Hahm T S, Fujisawa A, Tynan G R, Yagi M and Nagashima Y 2006 Phys. Plasmas 13 055502 [15] Fujisawa A 2009 Nucl. Fusion 49 013001 [16] Lin Z, Hahm T S, Lee W W, Tang W M and White R B 1998 Science 281 1835 [17] Fujisawa A, Itoh K, Iguchi H, Matsuoka K, Okamura S, Shimizu A, Minami T, Yoshimura Y, Nagaoka K, Takahashi C, Kojima M, Nakano H, Ohsima S, Nishimura S, Isobe M, Suzuki C, Akiyama T, Ida K, Toi K, Itoh S I and Diamond P H 2004 Phys. Rev. Lett. 93 165002 [18] Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448 [19] Zhao K J, Lan T, Dong J Q, Yan L W, Hong W Y, Yu C X, Liu A D, Qian J, Cheng J, Yu D L, Yang Q W, Ding X T, Liu Y and Pan C H 2006 Phys. Rev. Lett. 96 255004 [20] Conway G D, Smolyakov A I and Ido T 2022 Nucl. Fusion 62 013001 [21] Xu Y, Hidalgo C, Shesterikov I, Krämer-Flecken A, Zoletnik S, Schoor M V, Vergote M and Team T T 2013 Phys. Rev. Lett. 110 265005 [22] Xu M, Duan X R, Liu Y, et al. 2019 Nucl. Fusion 59 112017 [23] Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L and Yang Q W 2008 Phys. Plasmas 15 056105 [24] Lan T, Liu A D, Yu C X, Yan L W, Hong W Y, Zhao K J, Dong J Q, Qian J, Cheng J, Yu D L and Yang Q W 2008 Plasma Phys. Control. Fusion 50 045002 [25] Liu A D, Lan T, Yu C X, Zhao H L, Yan L W, Hong W Y, Dong J Q, Zhao K J, Qian J, Cheng J, Duan X R and Liu Y 2009 Phys. Rev. Lett. 103 095002 [26] Demidov V I, Ratynskaia S V and Rypdal K 2002 Rev. Sci. Instrum. 73 3409 [27] Zhong W L, Shi Z B, Xu Y, Zou X L, Duan X R, Chen W, Jiang M, Yang Z C, Zhang B Y, Shi P W, Liu Z T, Xu M, Song X M, Cheng J, Ke R, Nie L, Cui Z Y, Fu B Z, Ding X T, Dong J Q, Yi L, Yan L W, Yang Q W, Liu Y and Team H A 2015 Nucl. Fusion 55 113005 [28] He Y, Cheng J, Xu Y, Fang Q, Li Y, Xu J, Wang W, Yan L, Huang Z, Wu N, Jiang M, Shi Z, Liu Y, Zhong W and Xu M 2022 Plasma Sci. Technol. 24 095102 [29] Powers E J 1974 Nucl. Fusion 14 749 [30] Hlaváčková-Schindler K, Paluš M, Vejmelka M and Bhattacharya J 2007 Phys. Rep. 441 1 [31] Schreiber T 2000 Phys. Rev. Lett. 85 461 [32] Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier J T and Vicente R 2013 PLoS One 8 e55809 [33] Van Milligen B P, Birkenmeier G, Ramisch M, Estrada T, Hidalgo C and Alonso A 2014 Nucl. Fusion 54 023011 [34] Van Milligen B P, Carreras B A, Voldiner I, Losada U, Hidalgo C and Team T I 2021 Phys. Plasmas 28 092302 [35] Van Milligen B P, Estrada T, Carreras B A, Ascasíbar E, Hidalgo C, Pastor I, Fontdecaba J M, Balbín R and Team T I 2016 Phys. Plasmas 23 072305 [36] Xu J Q, Qu Y R, Li J C, Lin Z, Dong J Q, Peng X D, Jiang M, Qu H P, Huang Z H, Wu N, Wang W C, Hao G Z, Chen W, Li J Q and Xu M 2022 Nucl. Fusion 62 086048 [37] Mckee G R, Gupta D K, Fonck R J, Schlossberg D J, Shafer M W and Gohil P 2006 Plasma Phys. Control. Fusion 48 S123 [38] Hillesheim J C, Peebles W A, Carter T A, Schmitz L and Rhodes T L 2012 Phys. Plasmas 19 022301 [39] Gao Z 2013 Phys. Plasmas 20 032501 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|