| PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Effect of the confinement on two-dimensional complex plasmas with the shear force |
| Haoyu Qi(齐颢与)1,2,†, Yang Liu(刘阳)1,3,†, Shaohuang Bian(卞少皇)4, Runing Liang(梁儒宁)1, Dan Zhang(张丹)1, and Feng Huang(黄峰)1,‡ |
1 College of Science, China Agricultural University, Beijing 100083, China; 2 Office for Science and Technology, Northwest University, Xi'an 710069, China; 3 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universit?t, D-24098 Kiel, Germany; 4 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China |
|
|
|
|
Abstract Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force. Structural analysis via Voronoi diagrams and the local bond-order parameter $|\varPsi_6|$ shows that stronger confinement enhances hexagonal order and mitigates shear-induced disorder. Dynamical properties, determined by mean-square displacement (MSD) and the velocity autocorrelation function (VACF), indicate that the shear-induced superdiffusion weakens with increasing confinement strength. The entropy change ($\Delta{S}$) shows that strong confinement ($\omega > 1$) balances particle dynamics between shear and shear-free regions, thereby stabilizing the system. These findings highlight the interplay between confinement and shear force.
|
Received: 26 February 2025
Revised: 04 July 2025
Accepted manuscript online: 18 July 2025
|
|
PACS:
|
52.27.Lw
|
(Dusty or complex plasmas; plasma crystals)
|
| |
83.50.Ax
|
(Steady shear flows, viscometric flow)
|
| |
05.10.Gg
|
(Stochastic analysis methods)
|
| |
52.58.Qv
|
(Electrostatic and high-frequency confinement)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075315). |
Corresponding Authors:
Feng Huang
E-mail: 05033@cau.edu.cn
|
Cite this article:
Haoyu Qi(齐颢与), Yang Liu(刘阳), Shaohuang Bian(卞少皇), Runing Liang(梁儒宁), Dan Zhang(张丹), and Feng Huang(黄峰) Effect of the confinement on two-dimensional complex plasmas with the shear force 2025 Chin. Phys. B 34 105203
|
[1] Maity S and Arora G 2022 Sci. Rep. 12 20430 [2] Vaulina O, Khrapak S and Morfill G 2002 Phys. Rev. E 66 016404 [3] Schweigert V A, Schweigert I V, Melzer A, Homann A and Piel A 1998 Phys. Rev. Lett. 80 5345 [4] Liu B and Goree J 2008 Phys. Rev. Lett. 100 055003 [5] Maity S, Das A, Kumar S and Tiwari S K 2018 Phys. Plasmas 25 043701 [6] Quinn R A and Goree J 2000 Phys. Rev. E 61 3033 [7] Nosenko V and Goree J 2004 Phys. Rev. Lett. 93 155004 [8] Huang J, Wu Q, Ren Y, Yang F, Yang A, Yang Q and Pu X 2024 Proc. AAAI Conf. Artif. Intell. 38 2339 [9] Di Cairano L, Stamm B and Calandrini V 2021 Biophys. J. 120 4722 [10] Yu S, Wu J, Meng X, Chu R, Li X and Wu G 2021 Entropy 23 542 [11] Bley M, Hurtado P I, Dzubiella J and Moncho-Jordá A 2022 Soft Matter 18 397 [12] Liu Y, Zhu X, Wang Y, Chen Z and Huang F 2020 Contrib. Plasma Phys. 60 e201900190 [13] Wang J, Liu Y, Wang Y, Zhu W, Zhang W and Huang F 2021 IEEE Trans. Plasma Sci. 49 1694 [14] SwopeWC, Andersen H C, Berens P H andWilson K R 1982 J. Chem. Phys. 76 637 [15] Liu Y, Blosczyk N and Block D 2023 Phys. Plasmas 30 043701 [16] Song Y L, Huang F, Chen Z Y, Liu Y H and Yu M Y 2016 Phys. Lett. A 380 886 [17] Chen Z Y, Kong M H, Milošević M V and Wu Y C 2003 Phys. Scr. 67 439 [18] Amiranashvili Sh G, Gusein-Zade N G and Tsytovich V N 2001 Phys. Rev. E 64 016407 [19] Hou X N, Liu Y H, Huang F, Jiang S Z, Chen Z Y and Zhang R Y 2016 Phys. Plasmas 23 093702 [20] Huang F, Liu Y H, Ye M F, Wang X J and Wang L 2010 Chin. Phys. Lett. 27 115201 [21] Li W, Huang D, Wang K, Reichhardt C, Reichhardt C J O, Murillo M S and Feng Y 2018 Phys. Rev. E 98 063203 [22] Wang K, Li W, Huang D, Reichhardt C, Reichhardt C J O, Murillo M S and Feng Y 2018 Phys. Rev. E 98 063204 [23] Hou L J, Piel A and Shukla P K 2009 Phys. Rev. Lett. 102 085002 [24] Huang D, Baggioli M, Lu S, Ma Z and Feng Y 2023 Phys. Rev. Res. 5 013149 [25] Feng Y, Goree J and Liu B 2010 Phys. Rev. Lett. 104 165003 [26] Feng Y, Goree J and Liu B 2012 Phys. Rev. E 86 056403 [27] Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V and Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972 [28] Rothermel H, Hagl T, Morfill G E, Thoma M H and Thomas H M 2002 Phys. Rev. Lett. 89 175001 [29] Yang L, Schwabe M, Zhdanov S, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Zhang J and Du C R 2017 Europhys. Lett. 117 25001 [30] Durniak C, Samsonov D, Oxtoby N P, Ralph J F and Zhdanov S 2010 IEEE Trans. Plasma Sci. 38 2412 [31] Zhdanov S, Nunomura S, Samsonov D and Morfill G 2003 Phys. Rev. E 68 035401 [32] Edelsbrunner H and Seidel R 1985 Proc. 1st Annu. Symp. Comput. Geom. pp. 251-262 [33] Fortune S 1986 Proc. 2nd Annu. Symp. Comput. Geom. pp. 313-322 [34] Aurenhammer F and Klein R 2000 Handbook of Computational Geometry 5 201 [35] Fortune S 2017 Handbook of Discrete and Computational Geometry (Chapman and Hall/CRC) pp. 705-721 [36] Brock J D 1992 Bond-Orientational Order in Condensed Matter Systems (Springer) pp. 1-31 [37] Woon W Y and Lin I 2004 Phys. Rev. Lett. 92 065003 [38] Chan C L, Woon W Y and Lin I 2004 Phys. Rev. Lett. 93 220602 [39] Ott T and Bonitz M 2009 Phys. Rev. Lett. 103 195001 [40] Souzy M, Yin X, Villermaux E, Abid C and Metzger B 2015 Phys. Fluids 27 045104 [41] Utter B and Behringer R P 2004 Phys. Rev. E 69 031308 [42] Wong C S, Goree J, Haralson Z and Liu B 2018 Nat. Phys. 14 21 [43] Pandey B P and Vranjes J 2005 Phys. Scr. 72 247 [44] Wolf R A, Wan Y, Xing X, Zhang J C and Sazykin S 2009 J. Geophys. Res. Space Phys. 114 A09202 [45] Kaur P and Ganesh R 2019 Phys. Rev. E 100 053201 [46] Popel S I 1998 Phys. Scr. 57 272 [47] Wieben F and Block D 2019 Phys. Rev. Lett. 123 225001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|