Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 053401    DOI: 10.1088/1674-1056/ad24d9
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Vibronic effect study of 1A2 state of H2O and D2O

Bei-Yuan Zhang(张倍源)1, Li-Han Wang(王礼涵)1, Jian-Hui Zhu(朱剑辉)1, Wei-Qing Xu(徐卫青)2, Zi-Ru Ma(马子茹)1, Xiao-Li Zhao(赵小利)3, Yong Wu(吴勇)4,5,6,†, and Lin-FanZhu(朱林繁)1,‡
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China;
3 Department of Physics, Yantai University, Yantai 264005, China;
4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
5 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
6 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  The generalized oscillator strengths of the dipole-forbidden excitations of the ${}^{1}$A$_{2}$ of $\mathrm{H_2O}$ and $\mathrm{D_2O}$ were calculated with the time dependent density functional theory, by taking into account the vibronic effect. It is found that the vibronic effect converts the dipole-forbidden excitation of the ${}^{1}$A$_{2}$ into a dipole-allowed one, which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region. The present investigation shows that the vibronic effect of $\mathrm{H_2O}$ is slightly stronger than that of $\mathrm{D_2O}$, which exhibits a clear isotopic effect.
Keywords:  water      heavy water      generalized oscillator strength      vibronic effect      isotope effect  
Received:  15 January 2024      Revised:  28 January 2024      Accepted manuscript online: 
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  34.80.Gs (Molecular excitation and ionization)  
  31.15.ee (Time-dependent density functional theory)  
  95.30.Ky (Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334010, 12174259, and11604003).
Corresponding Authors:  Yong Wu,E-mail:wu_yong@iapcm.ac.cn;Lin-Fan Zhu,E-mail:lfzhu@ustc.edu.cn     E-mail:  wu_yong@iapcm.ac.cn;lfzhu@ustc.edu.cn

Cite this article: 

Bei-Yuan Zhang(张倍源), Li-Han Wang(王礼涵), Jian-Hui Zhu(朱剑辉), Wei-Qing Xu(徐卫青), Zi-Ru Ma(马子茹), Xiao-Li Zhao(赵小利), Yong Wu(吴勇), and Lin-FanZhu(朱林繁) Vibronic effect study of 1A2 state of H2O and D2O 2024 Chin. Phys. B 33 053401

[1] Sun Q, Wang S X, Xu Y C, Ma K, Wang L H, Li T J and Zhu L F 2022 J. Electron. Spectros Relat. Phenomena 258 147218
[2] Watanabe N, Suzuki D and Takahashi M 2011 J. Chem. Phys. 134 234309
[3] Chen J F, Wang S X, Ma K and Zhu L F 2022 J. Phys. B: At. Mol. Opt. Phys. 55 175201
[4] Watanabe N and Takahashi M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 135202
[5] Chen J F, Wang S X, Li H H, Zhu J H, Nie Z W, Li T J, Ma Z R, Wang L H and Zhu L F 2023 Chem. Phys. 568 111826
[6] Watanabe N and Takahashi M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155203
[7] Wang L H, Du X J, Xu Y C, Nie Z W, Wang D H, Wang S X and Zhu L F 2022 J. Phys. Chem. A 126 453
[8] Watanabe N and Takahashi M 2023 J. Phys. Chem. A 127 1866
[9] Watanabe N and Takahashi M 2022 J. Phys. B: At. Mol. Opt. Phys. 55 015201
[10] Campbell L and Brunger M J 2012 Plasma Sources Sci. Technol. 22 013002
[11] Garrett B C, Dixon D A, Camaioni D M, et al. 2005 Chem. Rev. 105 355
[12] Alizadeh E and Sanche L 2012 Chem. Rev. 112 5578
[13] Boudaiffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2000 Science 287 1658
[14] Champion C 2003 Phys. Med. Biol. 48 2147
[15] Nikjoo, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D and Uehara S 2016 Rep. Prog. Phys. 79 116601
[16] Incerti S, Kyriakou I, Bernal M A, Bordage M C, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee S B, Meylan S, Min C H, Shin W G, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran H N and Brown J M C 2018 Med. Phys. 45 e722
[17] Xu W Q, Ma Z R, Peng Y G, Du X J, Xu Y C, Wang L H, Li B, Zhang H R, Zhang B Y, Zhu J H, Wang S X, Wu Y, Wang J G and Zhu L F 2021 Phys. Rev. A 103 032808
[18] Chantranupong L, Hirsch G, Buenker R J, Kimura M and Dillon M A 1991 Chem. Phys. 154 13
[19] Gil T J, Rescigno T N, McCurdy C W and Lengsfield B H 1994 Phys. Rev. A 49 2642
[20] Mielczarek S and Miller K 1971 Chem. Phys. Lett. 10 369
[21] Muñoz A, Blanco F, Garcia G, Thorn P, Brunger M, Sullivan J and Buckman S 2008 Int. J. Mass. Spectrom 277 175
[22] Ralphs K, Serna G, Hargreaves L R, Khakoo M A, Winstead C and McKoy V 2013 J. Phys. B: At. Mol. Opt. Phys. 46 125201
[23] Hargreaves L, Ralphs K, Serna G, Khakoo M A, Winstead C and McKoy V 2012 J. Phys. B: At. Mol. Opt. Phys. 45 201001
[24] Thorn P A, Brunger M J, Teubner P J O, Diakomichalis N, Maddern T, Bolorizadeh M A, Newell W R, Kato H, Hoshino M, Tanaka H, Cho H and Kim Y K 2007 J. Chem. Phys. 126 064306
[25] Thorn P A, Brunger M J, Kato H, Hoshino M and Tanaka H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 697
[26] Brunger M J, Thorn P A, Campbell L, Diakomichalis N, Kato H, Kawahara H, Hoshino M, Tanaka H and Kim Y K 2008 Int. J. Mass. Spectrom. 271 80
[27] Lassettre E N and Skerbele A 2003 J. Chem. Phys. 60 2464
[28] Ma Z R, Wang S X, Peng Y G, Zhu J H, Xu Y C, Du X J, Wang L H, Xu W Q, Wu Y, Wang J G and Zhu L F 2022 Phys. Rev. A 105 062817
[29] Bauernschmitt R and Ahlrichs R 1996 Chem. Phys. Lett. 256 454
[30] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[31] Bethe H 1932 Z. Phys. Chem. 76 293
[32] Bethe H 1930 Ann. Phys. 397 325
[33] Inokuti M 1971 Rev. Mod. Phys. 43 297
[34] Kendall R A, Dunning Thom H J and Harrison R J 1992 J. Chem. Phys. 96 6796
[35] Dunning Thom H J 1989 J. Chem. Phys. 90 1007
[36] Merrick J P, Moran D and Radom L 2007 J. Phys. Chem. A 111 11683
[37] Jiménez-Hoyos C A, Janesko B G and Scuseria G E 2008 Phys. Chem. Chem. Phys. 10 6621
[38] Gupta V D 1981 J. Phys. B: At. Mol. Opt. Phys. 14 1761
[39] Mota R, Parafita R, Giuliani A, Hubin-Franskin M J, Lourençco J, Garcia G, Hoffmann S, Mason N, Ribeiro P, Raposo M and Limão-Vieira P 2005 Chem. Phys. Lett. 416 152
[1] Novel self-embedding holographic watermarking image encryption protection scheme
Linian Wang(王励年), Nanrun Zhou(周楠润), Bo Sun(孙博), Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(5): 050501.
[2] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[3] Characteristic analysis of scattering field in two-layer media by Green's function
Ping Zhang(张萍), Zhi-Ying Liu(刘智颖), Shou-Guo Yan(阎守国), Juan Huang(黄娟), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2023, 32(6): 064301.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[6] Revising the H216O line-shape parameters around 1.1 μm based on the speed-dependent Nelkin-Ghatak profile and the Hartmann-Tran profile
Hui Zhang(张惠), Jianjie Zheng(郑健捷), Qiang Liu(刘强), Wenyue Zhu(朱文越), Xianmei Qian(钱仙妹), Guisheng Jiang(江贵生), Shenlong Zha(查申龙), Qilei Zhang(张启磊), and Hongliang Ma(马宏亮). Chin. Phys. B, 2023, 32(12): 123301.
[7] Energy-distributable waterborne acoustic launcher for directional sensing
Tian Yang(杨天), Wenting Gao(高文婷), Shida Fan(范世达), Jie Ren(任捷), and Tianzhi Yang(杨天智). Chin. Phys. B, 2023, 32(12): 124302.
[8] Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations
Xi-Zhong Liu(刘希忠), Jie-Tong Li(李界通), and Jun Yu(俞军). Chin. Phys. B, 2023, 32(11): 110206.
[9] First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利). Chin. Phys. B, 2023, 32(10): 107401.
[10] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[13] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[14] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[15] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
No Suggested Reading articles found!