Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100701    DOI: 10.1088/1674-1056/addcd1
GENERAL Prev   Next  

Application of Gauss-Newton method in magnetic dipole model

Junchen Gao(高骏琛)1, Chaobo Liu(刘超波)2, Jinjing Zhang(张津菁)1, Yu Duan(段宇)1, Hao-Ran Yang(杨浩冉)1, and Daqiang Gao(高大强)1,†
1 College of Physical Science and Technology, Key Laboratory of Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Beijing Institute of Spacecraft Environment Engineering, Beijing 100000, China
Abstract  With the increasing accuracy requirements of satellite magnetic detection missions, reducing low-frequency noise has become a key focus of satellite magnetic cleanliness technology. Traditional satellite magnetic simulation methods have matured in static magnetic dipole simulations, but there is still significant room for optimization in the simulation and computation of low-frequency magnetic dipole models. This study employs the Gauss-Newton method and Fourier transform techniques for modeling and simulating low-frequency magnetic dipoles. Compared to the traditional particle swarm optimization (PSO) algorithm, this method achieves significant improvements, with errors reaching the order of 10$^{-13}$% under noise-free conditions and maintaining an error level of less than 0.5% under 10% noise. Additionally, the use of Fourier transform and the Gauss-Newton method enables high-precision magnetic field frequency identification and rapid computation of the dipole position and magnetic moment, greatly enhancing the computational efficiency and accuracy of the model.
Keywords:  magnetic dipole model      Gauss-Newton method      Fourier transform      inversion accuracy  
Received:  24 March 2025      Revised:  19 May 2025      Accepted manuscript online:  26 May 2025
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  02.30.Zz (Inverse problems)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFC2206003).
Corresponding Authors:  Daqiang Gao     E-mail:  gaodqxz@sina.com

Cite this article: 

Junchen Gao(高骏琛), Chaobo Liu(刘超波), Jinjing Zhang(张津菁), Yu Duan(段宇), Hao-Ran Yang(杨浩冉), and Daqiang Gao(高大强) Application of Gauss-Newton method in magnetic dipole model 2025 Chin. Phys. B 34 100701

[1] Langel R A and Hinze W J 1998 The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective (Cambridge: Cambridge University Press) pp. 1-393
[2] Friis-Christensen E and Lühr H, Hulot G 2006 Earth Planets Space 58 351
[3] Acuna M H 2002 Rev. Sci. Instrum. 73 3717
[4] Tauxe L 2010 Essentials of Paleomagnetism (Berkeley: University of California Press) pp. 1-489
[5] Constable C G and Parker R L 1988 J. Geophys. Res. Solid Earth 93 11569
[6] Love J J and Constable C G 2003 Geophys. J. Int. 152 515
[7] Blakely R J 1996 Potential Theory in Gravity and Magnetic Applica tions (Cambridge: Cambridge University Press) pp. 1-356
[8] Kennedy J and Eberhart R 1995 Proc. Int. Conf. Neural Networks, November 27-December 1, 1995, Perth, Australia, pp. 1942-1945
[9] Nabighian M N, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Peirce J W and Ruder M E, et al. 2005 Geophysics 70 33
[10] Mehlem K 1978 Spacecraft Electromagnetic Compatibility 165 165
[11] Mehlem K 1978 IEEE Trans. Magn. 14 1064
[12] Pudney M A, Carr C M, Schwartz S J and Howarth S I 2013 Geosci. Instrum. Method. Data Syst. 2 249
[13] Shi Y amd Eberhart R C 1999 Proc. Congr. Evol. Comput., July 6-9, 1999, Washington DC, USA, pp. 1945-1950
[14] Carrubba E, Junge A, Marliani F and Monorchio A 2012 Proc. ESA Workshop on Aerospace EMC, May 21-23, 2012, Florence, Italy, pp. 1-6
[15] Mehlem K, Wiegand A and Weickert S 2012 Proc. ESA Workshop on Aerospace EMC, May 21-23, 2012, Florence, Italy, pp. 1-6
[16] Love J J and Rigler E J 2014 Geophys. J. Int. 199 407
[17] Ovchinnikov M Y, Penkov V I, Roldugin D S and Pichuzhkina A V 2018 Acta Astronaut. 144 171
[18] Srivastava R, Sah R, Das K 2021 arXiv: 2107.09257 [physics.geo-ph]
[19] Torbert R B, Dors I, Argall M R, Genestreti K J, Burch J L, Farrugia C J, Strangeway R J, et al. 2020 Geophys. Res. Lett. 47 e2019GL085542
[20] Dennis J E Jr, Schnabel R B 1996 Numerical Methods for Uncon strained Optimization and Nonlinear Equations (Philadelphia: SIAM) pp. 1-258
[21] Wright S J 2006 Numerical Optimization (New York: Springer) pp. 135-163
[1] Quantum entangled fractional Fourier transform based on the IWOP technique
Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040302.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
[6] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[7] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[8] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[9] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[10] Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
Xiang-Qun Fu(付向群), Wan-Su Bao(鲍皖苏), He-Liang Huang(黄合良), Tan Li(李坦), Jian-Hong Shi(史建红), Xiang Wang(汪翔), Shuo Zhang(张硕), Feng-Guang Li(李风光). Chin. Phys. B, 2019, 28(2): 020302.
[11] Realization of quantum permutation algorithm in high dimensional Hilbert space
Dong-Xu Chen(陈东旭), Rui-Feng Liu(刘瑞丰), Pei Zhang(张沛), Yun-Long Wang(王云龙), Hong-Rong Li(李宏荣), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2017, 26(6): 060305.
[12] Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization
Zhao Jin(金朝), Han-Ming Zhang(张瀚铭), Bin Yan(闫镔), Lei Li(李磊), Lin-Yuan Wang(王林元), Ai-Long Cai(蔡爱龙). Chin. Phys. B, 2016, 25(3): 038701.
[13] From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡). Chin. Phys. B, 2015, 24(2): 020301.
[14] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[15] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
No Suggested Reading articles found!