Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020302    DOI: 10.1088/1674-1056/28/2/020302
GENERAL Prev   Next  

Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer

Xiang-Qun Fu(付向群)1,2, Wan-Su Bao(鲍皖苏)1,2, He-Liang Huang(黄合良)1,2, Tan Li(李坦)1,2, Jian-Hong Shi(史建红)1,2, Xiang Wang(汪翔)1,2, Shuo Zhang(张硕)1,2, Feng-Guang Li(李风光)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, Information Engineering University, Zhengzhou 450004, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  To overcome the difficulty of realizing large-scale quantum Fourier transform (QFT) within existing technology, this paper implements a resource-saving method (named t-bit semiclassical QFT over Z2n), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z23 on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments. The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N=15 is successfully factorized by implementing Shor's algorithm.
Keywords:  quantum cloud computation      quantum Fourier transform      semiclassical quantum Fourier transform      Shor's algorithm  
Received:  09 July 2018      Revised:  28 November 2018      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant No. 61502526).
Corresponding Authors:  Wan-Su Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Xiang-Qun Fu(付向群), Wan-Su Bao(鲍皖苏), He-Liang Huang(黄合良), Tan Li(李坦), Jian-Hong Shi(史建红), Xiang Wang(汪翔), Shuo Zhang(张硕), Feng-Guang Li(李风光) Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer 2019 Chin. Phys. B 28 020302

[1] Shor P W 1996 Proceeding 28th ACM Symposium on Theory of Computation, May 22-24, 1996, New York, USA, p. 212
[2] Grover L K 1996 Proceeding 28th ACM Symposium on Theory of Computation, May 22–24, 1996, New York, USA, p. 212
[3] Rivest R L, Shamir A and Adleman L M 1976 IEEE Trans. Inform. Theor. 22 644
[4] Diffie W and Hellman M E 1976 IEEE Trans. Inform. Theor. 22 644
[5] Jordan S P, Lee K S M and Preskil J 2012 Science 336 1130
[6] Wang H F and Zhang S 2018 Reversibility and Universality (Berlin: Springer) pp. 447-462
[7] Wiebe N, Braun D and Lloyd S 2012 Phys. Rev. Lett. 109 050505
[8] Long G L and Xiao L 2004 Phys. Rev. A 69 052303
[9] Yu C H, Gao F, Wang Q L and Wen Q Y 2016 Phys. Rev. A 94 042311
[10] Qu F M, Ji Z Q, Tian Y and Zhao S P 2018 Chin. Phys. B 27 070301
[11] Huang H L, Zhao Q, Ma X F, Liu C, Su Z E, Wang X L, Li L, Liu N L, Sanders B C, Lu C Y and Pang J W 2017 Phys. Rev. Lett. 119 050503
[12] Xu G L, Qiu D, Zou X and Gruska J 2018 Reversibility and Universality (Berlin: Springer) pp. 447–462
[13] Coppersmith D 2002 arXiv: 201067 [quant-ph]
[14] Griffiths R B and Niu C S 2000 Phys. Rev. Lett. 85 3049
[15] Chiaverini J, Britton J, Leibfried D, Knill E, Barrett M D, Blakestad R B, Itano J D, Jost J D, Langer C, Ozeri R, Schaetz T, Winel and D J 2005 Science 308 997
[16] Parker S and Plenio M B 2000 Phys. Rev. Lett. 85 3049
[17] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge University Press) pp. 216-247
[18] Fu X Q, Bao W S, Zhou C and Song Z 2012 Chin. Sci. Bull. 57 119
[19] I B M 2016 http://www.research.ibm.com/quantum/
[20] Fuchs C A 1996 “Distinguishability and Accessible Information in Quantum Theory”, Ph. D. Dissertation (Albuquerque: University of New Mexico)
[21] Ambainis A and Watrous J 2002 Theor. Comput. Sci. 287 1
[22] Qiu D, Li L, Mateus P and Sernadas A 2015 J. Comput. Syst. Sci. 81 359
[23] Li K, Qiu D, Li L, Zheng S and Rong Z 2017 Inform. Process. Lett. 120 23
[24] Vandersypen L M K 2001 “Experimental quantum computation with nuclear spins in liquid solution”, Ph. D. Dissertation (Palo Alto: Stanford University)
[25] Lu C Y, Browne D E, Yang T and Pan J W 2007 Phys. Rev. Lett. 99 250504
[26] IBM 2017 http://www.research.ibm.com/ibm-q/
[1] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
[2] Applications of quantum Fourier transform in photon-added coherent state
Ren Gang (任刚), Du Jian-Ming (杜建明), Yu Hai-Jun (余海军). Chin. Phys. B, 2014, 23(2): 024207.
No Suggested Reading articles found!