Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020301    DOI: 10.1088/1674-1056/24/2/020301
GENERAL Prev   Next  

From fractional Fourier transformation to quantum mechanical fractional squeezing transformation

Lv Cui-Hong (吕翠红)a, Fan Hong-Yi (范洪义)b, Li Dong-Wei (李东韡)a
a Faculty of Science, Jiangsu University, Zhenjiang 212013, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hyperbolic function, i.e., tanα→tanhα,sinα→sinhα, we find the quantum mechanical fractional squeezing transformation (FrST) which satisfies additivity. By virtue of the integration technique within the ordered product of operators (IWOP) we derive the unitary operator responsible for the FrST, which is composite and is made of eiπa*a/2 and exp[ia/2(a2+a*2)]. The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
Keywords:  fractional Fourier transformation      fractional squeezing transformation      unitary operator      the IWOP technique  
Received:  16 June 2014      Revised:  20 September 2014      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304126), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130532), the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140003), the Postdoctoral Science Foundation of China (Grant No. 2013M541608), and the Postdoctoral Science Foundation of Jiangsu Province, China (Grant No. 1202012B).
Corresponding Authors:  Lv Cui-Hong     E-mail:  lvch@mail.ujs.edu.cn

Cite this article: 

Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡) From fractional Fourier transformation to quantum mechanical fractional squeezing transformation 2015 Chin. Phys. B 24 020301

[1] Lv C H and Fan H Y 2011 Opt. Commun. 284 1925
[2] Namias V 1980 J. Inst. Math. Appl. 25 241
[3] McBride A C and Kerr F H 1987 IMA J. Appl. Math. 39 159
[4] Mendlovic D and Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875
[5] Mendlovic D Ozaktas H M and Lohmmann A W 1994 Appl. Opt. 33 6188
[6] Bernardo L and Soares O D D 1994 Opt. Commun. 110 517
[7] Fan H Y 2005 Quantum Mechanics to Quantum Optics – the Progress of Mathematical Physics (Shanghai: Shanghai Jiao Tong University Press)
[8] Lv C H, Fan H Y and Jiang N Q 2010 Chin. Phys. B 19 120303
[9] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[10] Fan H Y, Lou S Y and Hu L Y 2013 Chin. Phys. Lett. 30 090304
[11] Luo X H 2014 Acta Phys. Sin. 63 017302 (in Chinese)
[12] Du J M and Fan H Y 2013 Chin. Phys. B 22 060302
[13] Yang Y and Fan H Y 2013 Chin. Phys. B 22 030306
[14] Fan H Y 2003 J. Opt. B: Quantum. Semiclass. Opt. 5 R147
[15] Wünsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11
[16] Lv C H and Fan H Y 2010 Chin. Phys. Lett. 27 050301
[17] Maeda Joji, Fukuchi Yutaka and Matsuda Ichiro 2004 J. Opt. B: Quantum. Semiclass. Opt. 6 S658
[1] Introducing the general condition for an operator in curved space to be unitary
Jafari Matehkolaee Mehdi. Chin. Phys. B, 2021, 30(8): 080301.
[2] Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel
LÜ Cui-Hong(吕翠红), Fan Hong-Yi(范洪义), and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(12): 120303.
No Suggested Reading articles found!