Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 103101    DOI: 10.1088/1674-1056/addcbb
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Theoretical study of the light-induced conical intersection in the photodissociation of molecule OH

Jinqian Liu(刘金倩)1,2, Jialong Li(李嘉隆)1,2, Dongdong Zhang(张栋栋)1,2,†, and Dajun Ding(丁大军)1,2,‡
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Key Laboratory of Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
Abstract  Light-induced conical intersections (LICIs) present a distinctive mechanism for nonadiabatic coupling, thereby facilitating ultrafast chemical reactions, including the indirect photodissociation of diatomic molecules. In contrast to static conical intersections, LICIs are dynamically tunable, providing a pathway for precise control of molecular dissociation. In this study, we employ the time-dependent quantum wave packet method to investigate the dissociation dynamics of the OH molecule, focusing on its ground state X$^{2}\Pi$ and repulsive state 1$^{2}\Sigma^{-}$. By varying laser field parameters (intensity, full width at half maximum (FWHM), and wavelength), we elucidate how nonadiabatic coupling governs selective dissociation channel control. Our findings reveal that the choice of initial vibrational states and the tailoring of laser conditions significantly influence dissociation pathways, providing theoretical insights into manipulating molecular dynamics via LICIs. These results provide a foundation for future experimental studies and the development of advanced molecular control techniques.
Keywords:  light-induced conical intersection      indirect photodissociation      time-dependent quantum wave packet method  
Received:  01 March 2025      Revised:  23 April 2025      Accepted manuscript online:  23 May 2025
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: We thank Prof. Chuancun Shu for sharing his code with us. This project was supported by the National Natural Science Foundation of China (Grant Nos. 12134005 and 12334011) and the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92461301).
Corresponding Authors:  Dongdong Zhang, Dajun Ding     E-mail:  dongdongzhang@jlu.edu.cn;dajund@jlu.edu.cn

Cite this article: 

Jinqian Liu(刘金倩), Jialong Li(李嘉隆), Dongdong Zhang(张栋栋), and Dajun Ding(丁大军) Theoretical study of the light-induced conical intersection in the photodissociation of molecule OH 2025 Chin. Phys. B 34 103101

[1] Truhlar G D and Mead A C 2003 Phys. Rev. A 68 032501
[2] Baer M 2002 Phys. Rep. 358 75
[3] Worth G A and Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127
[4] Matsika S 2007 Rev. Comput. Chem. 23 83
[5] Halasz G J, Vibok A, Sindelka M, Moiseyev N and Cederbaum L S 2011 J. Phys. B 44 175102
[6] Halasz G J, Sindelka M, Moiseyev N, Cederbaum L S and Vibok A 2012 J. Phys. Chem. A 116 2636
[7] Halasz G J, Vibok A, Sindelka M and Cederbaum L S 2012 Chem. Phys. 399 146
[8] Halasz G J, Vibok A, Moiseyev N and Cederbaum L S 2012 J. Phys. B 45 135101
[9] Halasz G J, Vibok A, Meyer H D and Cederbaum L S 2013 J. Phys. Chem. A 117 8528
[10] Halasz G J, Vibok A, Moiseyev N and Cederbaum L S 2013 Phys. Rev. A 88 043413
[11] Halasz G J, Csehi A, Vibok A and Cederbaum L S 2014 J. Phys. Chem. A 118 11908
[12] Halasz G J, Csehi A, Vibok A and Cederbaum L S 2015 J. Phys. Chem. Lett. 6 348
[13] Natan A, Ware M R, Prabhudesai V S, Lev U, Bruner B D, Heber O and Bucksbaum P H 2016 Phys. Rev. Lett. 116 143004
[14] Csehi A, Halász J G, Cederbaum L S and András A 2017 Phys. Chem. Chem. Phys. 19 19656
[15] Csehi A, Halász G J and Vibók A 2018 Chem. Phys. 509 91
[16] Qin X and Zhang D S 2014 J. Korean Phys. Soc. 65 2017
[17] Li Y and Zhang P 2011 J. Theor. Comput. Chem. 10 747
[18] Shu C C and Henriksen N E 2011 J. Chem. Phys. 134 164308
[19] Shu C C, Yu J, Yuan K J, Hu W H, Yang J and Cong S L 2009 Phys. Rev. A 79 023418
[20] Shu C C, Yuan K J, Dong D, Petersen I R and Bandrauk A D 2017 J. Phys. Chem. Lett. 8 1
[21] Liu Y, Meng Q J, Sun Z G and Shu C C 2024 J. Phys. Chem. Lett. 15 8393
[1] 3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates
Ke Peng(彭科), Aihua Liu(刘爱华), Jun Wang(王俊), and Xi Zhao(赵曦). Chin. Phys. B, 2025, 34(9): 094203.
[2] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[3] Isotopic effects in two-body fragmentation process of water dications induced by electron-impact ionization
Xiaorui Xue(薛晓睿), Jiaqi Zhou(周家琪), Xintai Hao(郝鑫泰), Lei Wang(王磊), Peng Li(李鹏), Qibo Ma(马启博), and Xueguang Ren(任雪光). Chin. Phys. B, 2025, 34(7): 073401.
[4] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[5] Momentum distributions of symmetric (H2+) and asymmetric (HeH2+) molecular ions in a circularly polarized laser field under different ionization mechanisms
Xin-Yu Hao(郝欣宇), Shu-Juan Yan(闫淑娟), Ying Guo(郭颖), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(12): 123401.
[6] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[7] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[8] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[9] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[10] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[11] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[12] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[15] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
No Suggested Reading articles found!