Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 075202    DOI: 10.1088/1674-1056/adca19
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Diagnosis of electron temperature of copper foil plasmas produced at the Shenguang-II facility

Chenglong Zhang(张成龙)1,2, Haochen Gu(谷昊琛)2,3, Yu Dai(戴羽)2,3, Ke Fang(方可)2, Yufeng Dong(董玉峰)2,3, Peng Zhou(周鹏)4,5, and Yingjun Li(李英骏)1,†
1 State Key Laboratory for Tunnel Engineering, China University of Mining and Technology, Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Key Laboratory for Laser Plasmas (MoE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
5 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Warm dense plasmas are crucial for high-energy-density physics and inertial confinement fusion research. Experiments involving laser-irradiated copper (Cu) foil were performed at the Shenguang-II facility. A highly oriented pyrolytic graphite crystal spectrometer measured the time-integrated spectral distribution of Cu under varying laser intensities. Using the two-dimensional radiation-hydrodynamics code FLASH and the spectral analysis code FLYCHK, we simulated the temporal evolution of plasma density and temperature distributions, as well as the emission intensities of spectral lines at different temperatures and densities. The simulation results revealed that the two-electron satellite lines ($J$) and the resonance line ($W$) emissions of Cu originate predominantly from the radiation region near the critical density surface, with a density range from approximately 0.5$ n_{\rm c}$ to 1.0$ n_{\rm c}$, and radiate primarily during the laser irradiation period. By analyzing the $J/W$ intensity ratio of the measured spectral lines, we estimated the electron temperatures near the critical-density surface under different laser intensities.
Keywords:  electron temperature      crystal spectrometer      x-ray spectroscopy  
Received:  10 February 2025      Revised:  28 March 2025      Accepted manuscript online:  08 April 2025
PACS:  52.57.-z (Laser inertial confinement)  
  52.57.Kk (Fast ignition of compressed fusion fuels)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25051000, XDA25010100, XDA25010300, XDA25030100, and XDA25030200).
Corresponding Authors:  Yingjun Li     E-mail:  lyj@aphy.iphy.ac.cn

Cite this article: 

Chenglong Zhang(张成龙), Haochen Gu(谷昊琛), Yu Dai(戴羽), Ke Fang(方可), Yufeng Dong(董玉峰), Peng Zhou(周鹏), and Yingjun Li(李英骏) Diagnosis of electron temperature of copper foil plasmas produced at the Shenguang-II facility 2025 Chin. Phys. B 34 075202

[1] Wu C S, Zhou F Y, Yan J, et al. 2024 Chin. Phys. Lett. 41 085202
[2] Hammer J H, Hartman C W and Eddleman J L 1988 Phys. Rev. Lett. 61 25
[3] Labaune C, Baccou C, Depierreux S, et al. 2013 Nat. Commun. 4 2506
[4] Zhong J, Li Y, Wang X, et al. 2010 Nat. Phys. 6 984
[5] Rogers F J and Iglesias C A 1994 Science 263 50
[6] Forrest C J, Crilly A, Schwemmlein A, et al. 2022 Rev. Sci. Instrum. 93 103505
[7] Gatu Johnson M 2023 Rev. Sci. Instrum. 94 021104
[8] Fang Y L, Li D Y, Cheng H, et al. 2023 Chin. Phys. B 32 110703
[9] He Z C, Zhang J Y, Yang J M, et al. 2023 Chin. Phys. B 32 015202
[10] TheobaldW, Solodov A A, Stoeckl C, et al. 2014 Nat. Commun. 5 5785
[11] Zhang C L, Zhang Y H, Yuan X H, et al. 2024 Chin. Phys. B 33 025201
[12] Walls M 2012 Nat. Photonics 6 503
[13] Beier N F, Allison H, Efthimion P, et al. 2022 Phys. Rev. Lett. 129 135001
[14] Gao L, Kraus B F, Hill K W, et al. 2022 Phys. Rev. Lett. 128 185002
[15] Zhang J, Wang W M, Yang X H, et al. 2020 Phil. Trans. R. Soc. A 378 20200015
[16] Dai Y, Gu H C, Fang K, et al. 2024 High Power Laser Sci. Eng. 12 e50
[17] Sakata S, Lee S, Morita H, et al. 2018 Nat. Commun. 9 3937
[18] Liu Z D, Zhong J Y, Yuan X H, et al. 2023 Chin. Phys. B 32 110702
[19] Dong Y F, Zhang Z, Xu M H, et al. 2020 Rev. Sci. Instrum. 91 033105
[20] Biedermann C, Radtke R, Fournier K B, et al. 2002 Phys. Rev. E. 66 066404
[21] Joshi T R, Bailly-Grandvaux M, Turner R E, et al. 2023 Phys. Plasmas 30 122109
[22] Rosmej O N, Samsonova Z, Höfer S, et al. 2018 Phys. Plasmas 25 083103
[23] Pu Y D, Zhang J Y, Yang J M, Huang T X and Ding Y K 2011 Chin. Phys. B 20 015202
[24] Fryxell B, Olson R, Ricker P, et al. 2000 Astrophys. J., Suppl. Ser. 131 273
[25] Chung H K, Chen M H, Morgan W L, et al. 2005 High. Energ. Dens. Phys. 1 3
[26] Huntington C M, Kuranz C C, Malamud G, et al. 2012 Rev. Sci. Instrum. 83 10
[1] Numerical simulation study of ionization characteristics of argon dielectric barrier discharge
Guiming Liu(刘桂铭), Lei Chen(陈雷), Zhibo Zhao(赵智博), and Peng Song(宋鹏). Chin. Phys. B, 2023, 32(12): 125205.
[2] Design and calibration of an elliptical crystal spectrometer for the diagnosis of proton-induced x-ray emission (PIXE)
Yanlyu Fang(方言律), Dongyu Li(李东彧), Hao Cheng(程浩), Yuan Gao(高原), Ze-Qing Shen(申泽清), Tong Yang(杨童), Yu-Ze Li(李昱泽), Ya-Dong Xia(夏亚东), Yang Yan(晏炀), Sha Yan(颜莎), Chen Lin(林晨), and Xue-Qing Yan(颜学庆). Chin. Phys. B, 2023, 32(11): 110703.
[3] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[4] Fabrication of GaAs/SiO2/Si and GaAs/Si heterointerfaces by surface-activated chemical bonding at room temperature
Rui Huang(黄瑞), Tian Lan(兰天), Chong Li(李冲), Jing Li(李景), and Zhiyong Wang(王智勇). Chin. Phys. B, 2021, 30(7): 076802.
[5] Soft x-ray spectroscopy for probing electronic and chemical states of battery materials
Wanli Yang(杨万里) and Ruimin Qiao(乔瑞敏). Chin. Phys. B, 2016, 25(1): 017104.
[6] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
[7] Characterization of relativistic electrons generated by a cone guiding laser pulse
Liu Hong-Jie(刘红杰), Gu Yu-Qiu(谷渝秋), Zhou Wei-Min(周维民), Yu Jin-Qing(余金清), Zhu Bin(朱斌), Wu Yu-Chi(吴玉迟), Shan Lian-Qiang(单连强), Wen Xian-Lun(温贤伦), Li Fang(李芳), Qian Feng(钱凤), Cao Lei-Feng(曹磊峰), Zhang Bao-Han(张保汉), and Zheng Zhi-Jian(郑志坚) . Chin. Phys. B, 2012, 21(5): 055207.
[8] Electron temperature diagnostics of aluminium plasma in z-pinch experiment on “QiangGuang-1” facility
Li Mo (李沫), Wu Jian (吴坚), Wang Liang-Ping (王亮平), Wu Gang (吴刚), Han Juan-Juan (韩娟娟), Guo Ning (郭宁), Qiu Meng-Tong (邱孟通). Chin. Phys. B, 2012, 21(12): 125202.
[9] Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasma
Xia Xiong-Ping(夏雄平), Cai Ze-Bin(蔡泽彬), and Yi Lin(易林) . Chin. Phys. B, 2011, 20(9): 095204.
[10] Spatially-resolved spectroscopic diagnosing of aluminum wire array Z-pinch plasmas on QiangGuang-I facility
Ye Fan (叶凡), Li Zheng-Hong (李正宏), Qin Yi (秦义), Jiang Shu-Qing (蒋树庆), Xue Fei-Biao (薛飞彪), Yang Jian-Lun (杨建伦), Xu Rong-Kun (徐荣昆), Jin Yong-Jie (金永杰). Chin. Phys. B, 2010, 19(7): 075204.
[11] Electron temperature fluctuation in the HT-7 Tokamak plasma observed by electron cyclotron emission imaging
Xu Xiao-Yuan(徐小圆), Wang Jun(王俊), Yu Yi(余弈), Wen Yi-Zhi(闻一之), Yu Chang-Xuan(俞昌旋), Liu Wan-Dong(刘万东), Wan Bao-Nian(万宝年), Gao Xiang(高翔), N. C. Luhmann, C. W. Domier, Jian Wang(王剑), Z. G. Xia(夏正刚), and Zuowei Shen(申作玮). Chin. Phys. B, 2009, 18(3): 1153-1160.
[12] Experimental study on parameters of dust plasma in SiH4/C2H4/Ar discharges
Wu Jing(吴静), Zhang Peng-Yun(张鹏云), Sun Ji-Zhong(孙继忠), Zhang Jian(张健), Ding Zhen-Feng(丁振峰), and Wang De-Zhen(王德真) . Chin. Phys. B, 2008, 17(5): 1848-1853.
[13] A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas
Niu Tian-Ye(牛田野), Cao Jin-Xiang(曹金祥), Liu Lei(刘磊), Liu Jin-Ying(刘金英), Wang Yan(王艳), Wang Liang(王亮), and Lv You(吕铀). Chin. Phys. B, 2007, 16(9): 2757-2763.
[14] Emission spectra simulation of calcium plasmas in non-local thermodynamic equilibrium
Liang Gui-Yun (梁贵云), Bian Xia (边霞), Zhao Gang (赵刚). Chin. Phys. B, 2004, 13(6): 891-897.
[15] Study of electron temperature gradient instability in toroidal plasmas with negative magnetic shear
Jian Guang-De (简广德), Dong Jia-Qi (董家齐). Chin. Phys. B, 2004, 13(6): 898-904.
No Suggested Reading articles found!