Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 1153-1160    DOI: 10.1088/1674-1056/18/3/052
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electron temperature fluctuation in the HT-7 Tokamak plasma observed by electron cyclotron emission imaging

Xu Xiao-Yuan(徐小圆)a), Wang Jun(王俊)a), Yu Yi(余弈)a), Wen Yi-Zhi(闻一之)a), Yu Chang-Xuan(俞昌旋)a), Liu Wan-Dong(刘万东)a), Wan Bao-Nian(万宝年)b), Gao Xiang(高翔)b), N. C. Luhmannc), C. W. Domierc), Jian Wang(王剑)c), Z. G. Xia(夏正刚)c), and Zuowei Shen(申作玮)c)
a Chinese Academy of Sciences (CAS) Key Laboratory of Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; b Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; c Department of Applied Science, University of California, Davis CA 95616, USA
Abstract  The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number $\bar{k}_{\theta}$ is calculated to be about 1.58 cm-1, or $\bar{k}_{\theta\rho s}$ ≈ 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.
Keywords:  electron temperature fluctuation      electron cyclotron emission imaging      Tokamak  
Received:  07 June 2008      Revised:  25 August 2008      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.25.Gj (Fluctuation and chaos phenomena)  
  52.35.Kt (Drift waves)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.25.Fi (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10335060), PRC--US Fusion Cooperation Program (Plasma Physics, Project A--5), and Chinese Academy of Sciences and Japanese Society of Promotion of Science (CAS-JSPS) Core Univ

Cite this article: 

Xu Xiao-Yuan(徐小圆), Wang Jun(王俊), Yu Yi(余弈), Wen Yi-Zhi(闻一之), Yu Chang-Xuan(俞昌旋), Liu Wan-Dong(刘万东), Wan Bao-Nian(万宝年), Gao Xiang(高翔), N. C. Luhmann, C. W. Domier, Jian Wang(王剑), Z. G. Xia(夏正刚), and Zuowei Shen(申作玮) Electron temperature fluctuation in the HT-7 Tokamak plasma observed by electron cyclotron emission imaging 2009 Chin. Phys. B 18 1153

[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[3] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[4] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[5] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[6] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[7] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[8] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[9] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[10] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[11] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[12] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[13] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[14] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[15] Simulations of the L–H transition dynamics with different heat and particle sources
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国). Chin. Phys. B, 2015, 24(11): 115204.
No Suggested Reading articles found!