Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050308    DOI: 10.1088/1674-1056/adc662
Special Issue: SPECIAL TOPIC — Quantum communication and quantum network
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Unidirectional quantum private comparison based on quantum private query

Hexiang Sun(孙鹤翔)1, Ding Xing(邢丁)1, Zhao Dou(窦钊)1,†, Jian Li(李剑)2, Xiubo Chen(陈秀波)1, and Lixiang Li(李丽香)1
1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Previous bidirectional quantum private comparison (BQPC) protocols cannot meet the requirements in some special application scenarios, where only one party needs to obtain the comparison results without a third party (TP), such as scenarios for authority surveys or healthcare data sharing. In addition to this, the BQPC protocol has the potential of information leakage in multiple comparisons. Therefore, we design a new unidirectional quantum private comparison (UQPC) protocol based on quantum private query (QPQ) protocols with ideal database security and zero failure probability (IDS-ZF), for the reason that they have excellent unidirectionality and security. Concretely, we design a UQPC protocol based on Wei et al.'s work [IEEE Transactions on Computers 67 2 (2017)] and it includes an authentication process to increase the resistance to outside attacks. Moreover, we generalize the protocol and propose a general model that can transform a QPQ protocol with or without the IDS-ZF property into a secure UQPC protocol. Finally, our study shows that protocols using our model are secure, practical, and have the IDS-ZF property.
Keywords:  quantum private comparison      unidirectionality      identification      general model  
Received:  13 February 2025      Revised:  07 March 2025      Accepted manuscript online:  28 March 2025
PACS:  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2024YFB2906504 and 2024YFB2906500), the National Natural Science Foundation of China (Grant Nos. 62401067 and 62272051), and the 111 Project (Grant No. B21049).
Corresponding Authors:  Zhao Dou     E-mail:  dou@bupt.edu.cn

Cite this article: 

Hexiang Sun(孙鹤翔), Ding Xing(邢丁), Zhao Dou(窦钊), Jian Li(李剑), Xiubo Chen(陈秀波), and Lixiang Li(李丽香) Unidirectional quantum private comparison based on quantum private query 2025 Chin. Phys. B 34 050308

[1] Yao A C 1982 23rd annual symposium on foundations of computer science (sfcs 1982) pp. 160-164
[2] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[3] Luo M X 2024 Quantum Networks (Springer)
[4] Lo H K 1997 Phys. Rev. A 56 1154
[5] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
[6] Chen X B, Su Y, Niu X X and Yang Y X 2014 Quantum Inf. Process. 13 101
[7] Lin S, Sun Y, Liu X F and Yao Z Q 2013 Quantum Inf. Process. 12 559
[8] Liu W, Wang Y B and Jiang Z T 2011 Opt. Commun. 284 3160
[9] Liu W, Wang Y B, Jiang Z T and Cao Y Z 2012 International Journal of Theoretical Physics 51 69
[10] Tseng H Y, Lin J and Hwang T 2012 Quantum Inf. Process. 11 373
[11] Fan P, Rahman A U, Ji Z, Ji X, Hao Z and Zhang H 2022 Mod. Phys. Lett. A 37 2250026
[12] Gong L H, Chen Z Y, Qin L G and Huang J H 2023 Advanced Quantum Technologies 6 2300097
[13] Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304
[14] Gong L H, Li M L, Cao H and Wang B 2024 Laser Physics Letters 21 055209
[15] Wang B, Gong L H and Liu S Q 2024 Chin. Phys. B 33 110303
[16] Gong L H, Ye Z J, Liu C and Zhou S 2024 Laser Physics Letters 21 035207
[17] Liu C, Zhou S, Gong L H and Chen H Y 2023 Quantum Inf. Process. 22 255
[18] Giovannetti V, Lloyd S and Maccone L 2008 Phys. Rev. Lett. 100 230502
[19] Olejnik L 2011 Phys. Rev. A 84 022313
[20] Yu F and Qiu D 2014 Quantum Information and Computation 14 91
[21] Jakobi M, Simon C, Gisin N, Bancal J D, Branciard C, Walenta N and Zbinden H 2011 Phys. Rev. A 83 022301
[22] Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[23] Giovannetti V, Lloyd S and Maccone L 2010 IEEE Transactions on Information Theory 56 3465
[24] Gao F, Qin S, Huang W and Wen Q 2019 Science China Physics, Mechanics & Astronomy 62 70301
[25] Wei C Y, Gao F, Wen Q Y and Wang T Y 2014 Scientific Reports 4 7537
[26] Wei C Y, Cai X Q, Liu B,Wang T Y and Gao F 2017 IEEE Transactions on Computers 67 2
[27] Sun J, Qian J, Shi C, Zhu D, Zhu Y and Jiang Y 2024 Optical and Quantum Electronics 56 761
[28] Qin L, Liu B, Gao F, Huang W, Xu B and Li Y 2024 Physica A 633 129427
[29] Jiao Y F, Huang W, Liu B, Shao W Z, Shen Z D and Xu B J 2024 Quantum Inf. Process. 23 133
[30] Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[31] Liu B, Xia S, Xiao D, Huang W, Xu B and Li Y 2022 Science China Physics, Mechanics & Astronomy 65 240312
[32] Liu B, Gao F, Huang W and Wen Q 2015 Science China Physics, Mechanics & Astronomy 58 100301
[33] Yang Y G, Sun S J, Tian J and Xu P 2014 Optik 125 5538
[34] Hou M and Wu Y 2024 Entropy 26 682
[35] Li J, Che F, Wang Z and Fu A 2023 Entropy 25 1552
[36] Gianni J and Qu Z 2021 Journal of Quantum Computing 3 45
[37] Basak J 2023 Quantum Inf. Process. 22 276
[38] Hu S, Song X and Xu A 2021 Proceedings of the 6th International Conference on Big Data and Computing pp. 104-108
[39] Yang Y G, Yang P Z, Xu G B, Jiang D H, Zhou Y H, Shi W M and Li D 2024 International Journal of Theoretical Physics 63 180
[1] Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts
Bing Hao(郝兵), Jingjing Guo(郭晶晶), Peizhi Liu(刘培植), and Junjie Guo(郭俊杰). Chin. Phys. B, 2024, 33(9): 096802.
[2] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
[3] Multi-party semi-quantum private comparison protocol of size relation based on two-dimensional Bell states
Bing Wang(王冰), Li-Hua Gong(龚黎华), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2024, 33(11): 110303.
[4] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平),Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[5] Mutation detection and fast identification of switching system based on data-driven method
Zhonghua Zhang(张钟化), Wei Xu(徐伟), and Yi Song(宋怡). Chin. Phys. B, 2023, 32(5): 050201.
[6] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[7] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[8] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[9] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[10] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[11] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[12] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[13] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[14] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[15] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
No Suggested Reading articles found!