Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 064601    DOI: 10.1088/1674-1056/adc2e0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fractional order nonlinear dynamics modeling of air spring

Zhemin Kang(康哲民)2, Shaofang Wen(温少芳)1,2,3,†, Jing Chen(陈婧)2, Yongjun Shen(申永军)1, and Yunfei Liu(刘云飞)4,2
1 State Key Laboratory of Structural Mechanical Behavior and System Safety in Traffic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
2 School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
3 Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
4 Shanghai Railway Bureau Group Co., Ltd. Nanxiang Station, Shanghai 201802, China
Abstract  The air spring is a non-metallic spring device that utilizes the deformation of flexible materials and the compression of air to generate restoring force, achieving vibration damping and buffering effects. It features height adjustment and high-frequency vibration isolation. Air springs exhibit significant viscoelastic and memory characteristics. Traditional dynamic models of air springs are complex and unable to accurately describe their viscoelastic properties. This paper introduces fractional calculus theory to study them. Through experimental research on air springs, test data are analyzed to obtain their mechanical properties under different working conditions. A fractional-order nonlinear dynamic model of the air spring is established, and the model parameters are identified using the least squares method. The experimental data are fitted to verify the model's accuracy.
Keywords:  air spring      experimental study      fractional calculus      dynamic characteristics  
Received:  01 February 2025      Revised:  04 March 2025      Accepted manuscript online:  20 March 2025
PACS:  46.55.-n  
  02.30.Uu (Integral transforms)  
  47.32.-y (Vortex dynamics; rotating fluids)  
  46.40.-f (Vibrations and mechanical waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072206 and U1934201) and Science and Technology Project of Hebei Education Department of Hebei Province, China (Grant No. QN2024254).
Corresponding Authors:  Shaofang Wen     E-mail:  wsf39811@163.com

Cite this article: 

Zhemin Kang(康哲民), Shaofang Wen(温少芳), Jing Chen(陈婧), Yongjun Shen(申永军), and Yunfei Liu(刘云飞) Fractional order nonlinear dynamics modeling of air spring 2025 Chin. Phys. B 34 064601

[1] Yin Z H, Khajepour A, Cao D P, et al. 2012 Vehicle Syst. Dyn. 50 1735
[2] Harsh, Karnam Shri and Razdan S 2022 J. Eng. Res. Sci. 1 29
[3] Fang Y, et al. 2024 Eng. Fail. Anal. 159 107997
[4] Pradhan P and Singh D 2023 Mater. Today Proc. 81 486
[5] Zhao D and Li X Y 2015 Prog. Aerosp. Sci. 74 114
[6] Luo X K, et al. 2023 J. Braz. Soc. Mech. Sci. Eng. 45 489
[7] Da X, Bao H H, Wan H H and Cheng Z G 2018 J. Vibroeng. 20 332
[8] Li Y R, et al. 2023 Appl. Sci. 13 12677
[9] Docquier N, Fisette P and Jeanmart H 2007 Vehicle Syst. Dyn. 45 505
[10] Mazzola L and Berg M 2014 Proc. Inst. Mech. Eng. F 228 225
[11] Zargar B, Fahim A and Jnifene A 2011 J. Vib. Control 18 1777
[12] Liu H and Lee J C 2011 Int. J. Automot. Technol. 12 839
[13] Zhu H, Yang J, Zhang Y, et al. 2017 J. Sound Vib. 408 87
[14] Zhang M, Luo S, Gao C, et al. 2018 Vehicle Syst. Dyn. 56 1797
[15] Chen J J, Yin Z H, Yuan X J, et al. 2021 Measurement 169 108355
[16] Wu M Y, Yin H, Li X B, et al. 2022 J. Sound Vib. 521 116693
[17] Xie J H Xie et al 2024 Chin. Phys. B 33 050706
[18] Fang K J, Cheng H T,Wang J, et al. 2012 Railway Qual. Control 40 11 (in Chinese)
[19] China Railway Corporation 2013 TJ/CL279-2013 “Air Springs for High-Speed Trainsets” (China Railway Corporation, Beijing)
[20] Wu M Y, Yin H, Li X B, et al. 2022 J. Sound Vib. 521 116693
[21] Facchinetti A, Mazzola L, Alfi S, et al. 2010 Vehicle Syst. Dyn. 48 S1 429
[22] Wen S F 2018 Research on Dynamics and Control of Fractional Order Parametric Excitation Systems, PhD Thesis (Shijiazhuang: Shijiazhuang Tiedao University) (in Chinese)
[1] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[6] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[7] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[10] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[11] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[12] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[13] Energy dissipation of a ring-like metal rubber isolator
Yan Hui (闫辉), Zhang Wen-Jing (张文静), Jiang Hong-Yuan (姜洪源), Chen Liang (陈亮). Chin. Phys. B, 2014, 23(4): 040702.
[14] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[15] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
No Suggested Reading articles found!