Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100504    DOI: 10.1088/1674-1056/26/10/100504
GENERAL Prev   Next  

A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations

Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.
Keywords:  color image encryption      DNA sequence operation      fractional calculus      piecewise-linear hyperchaotic system  
Received:  24 March 2017      Revised:  04 June 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Vx (Communication using chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61161006 and 61573383).
Corresponding Authors:  Ke-Hui Sun     E-mail:

Cite this article: 

Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波) A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations 2017 Chin. Phys. B 26 100504

[1] Li J H and Liu H 2013 IET Inform. Secur. 7 265
[2] Li C Q 2016 Signal Process. 118 203
[3] Ai X X, Sun K H, He S B, et al. 2014 Acta Phys. Sin. 63 120511(in Chinese)
[4] Zhang W, Yu H and Zhu Z L 2015 Opt. Commun. 338 199
[5] Liu W H, Sun K H and Zhu C X 2016 Opt. Laser. Eng. 84 26
[6] Ye G D, Zhao H Q and Chai H J 2016 Nonlinear Dyn. 83 2067
[7] Chai X L, Gan Z H, Lu Y, Zhang M H and Chen Y R 2016 Chin. Phys. B 25 100503
[8] Gong L H, Liu X B, Zheng F, and Zhou N R J. Mod. Opt. 60 1074
[9] Liu Z J, Li S, Liu W and Liu S T Opt. Laser. Eng. 51 224
[10] Oldham K B and Spanier J 1974 The Fractional Calculus:Theory and Application of Differentiation and Integration to Arbitrary Order (New York:Academic Press) p. 46
[11] Bhalekar S 2012 Signal Image Video Process. 6 513
[12] Li C B, Sprott J C and Thio W, et al. 2014 IEEE Trans. Circuits Syst. Ⅱ 61 977
[13] He S B, Sun K H and Wang H H 2015 Entropy 17 8299
[14] Momani S and Al-Khaled K 2005 Appl. Math. Comput. 162 1351
[15] Wang H H, Sun K H and He S B 2015 Phys. Scr. 90 015206
[16] Adleman L 1994 Science 266 1021
[17] Chai X L, Gan Z H and Lu Y, et al. 2016 Chin. Phys. B 25 100503
[18] Zhang Q, Guo L and Wei X P 2010 Math. Comput. Model. 52 2028
[19] Kumar M, Iqbal A and Kumar P 2012 Signal Process. 125 187
[20] Liu H J, Wang X Y and Kadir A 2012 Appl. Soft Comput. 12 1457
[21] Wang X Y, Zhang Y Q and Zhao Y Y Nonlinear Dyn. 82 1269
[22] Sui L S and Gao B Opt. Laser Technol. 48 117
[23] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[24] Saberikamarposhti M, Mohammad D and Rahim M S M, et al. 2014 Nonlinear Dyn. 75 407
[25] Watson J D and Crick F H C 1953 Nature 171 737
[26] Zhou N R, Pan S M, Cheng S, et al. 2016 Opt. Laser Technol. 82 121
[27] Wang X Y and Zhang H L 2015 Opt. Commun. 342 51
[28] Wei X P, Guo L and Zhang Q, et al. 2012 J. Syst. Software 85 290
[29] Tong X J, Wang Z and Zhang M, et al. 2015 Nonlinear Dyn. 80 1493
[30] He S B, Sun K H and Wang H H 2014 Acta Phys. Sin. 63 030502(in Chinese)
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[6] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[7] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[10] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
[11] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[12] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[13] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[14] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[15] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
Wei Han-Yu (魏含玉), Xia Tie-Cheng (夏铁成 ). Chin. Phys. B, 2012, 21(11): 110203.
No Suggested Reading articles found!