Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060503    DOI: 10.1088/1674-1056/23/6/060503
GENERAL Prev   Next  

Abundant solutions of Wick-type stochastic fractional 2D KdV equations

Hossam A. Ghanya b, Abd-Allah Hyderc
a Department of Mathematics, Faculty of Science, Taif University, Taif, Saudi Arabia;
b Department of Mathematics, Helwan University, Cairo, Egypt;
c Department of Engineering Physics and Mathematics, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Abstract  A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach.
Keywords:  2D KdV equations      fractional calculus      white noise      Hermite transform  
Received:  26 November 2013      Revised:  23 December 2013      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.30.Jr (Partial differential equations)  
Corresponding Authors:  Hossam A. Ghany, Abd-Allah Hyder     E-mail:;

Cite this article: 

Hossam A. Ghany, Abd-Allah Hyder Abundant solutions of Wick-type stochastic fractional 2D KdV equations 2014 Chin. Phys. B 23 060503

[1] Holden H, Øsendal B, Ubøe J and Zhang T 1996 Stochastic Partial Differential Equations (Birhkäuser: Basel) pp. 159-163
[2] Manakov S V, Santini P M and Takhtajan L A 1980 Phys. Lett. A 75 451
[3] Sweilam N H, Khader M M and Al-Bar 2007 Phys. Lett. A 371 26
[4] Daftardar-Gejji V and Jafari H 2007 Appl. Math. Comput. 189 541
[5] Daftardar-Gejji V and Bhalekar S 2008 Appl. Math. Comput. 202 113
[6] Golbabai A and Sayevand K 2010 Nonlinear. Sci. Lett. A 1 147
[7] Golbabai A and Sayevand K 2011 Comput. Math. Appl. 62 1003
[8] Li B A and Wang M L 2005 Chin. Phys. 14 1698
[9] Wang M L and Zhou Y B 2003 Phys. Lett. A 318 84
[10] Wang M L, Wang Y M and Zhang J L 2003 Chin. Phys. 12 1341
[11] Zhang J L, Ren D F and Wang M L 2003 Chin. Phys. 12 825
[12] Zhou Y B, Wang M L and Wang Y M 2003 Phys. Lett. A 308 31
[13] Li Z B and He H J 2010 Math. Comput. Appl. 15 970
[14] Wadati M J 1983 J. Phys. Soc. Jpn. 52 2642
[15] Xie Y C 2003 Phys. Lett. A 310 1617
[16] Xie Y C 2004 Chaos, Solitons and Fractals 20 33742
[17] Xie Y C 2004 J. Phys. A: Math. Gen. 37 522936
[18] Xie Y C 2004 Chaos, Solitons and Fractals 21 47380
[19] Chen B and Xie Y C 2005 J. Phys. A: Math. Gen. 38 81522
[20] Chen B and Xie Y C 2005 Chaos, Solitons and Fractals 23 2817
[21] Chen B and Xie Y C 2007 J. Comput. Appl. Math. 203 24963
[22] Ghany H A 2011 Chin. J. Phys. 49 926
[23] Ghany H A and Saad M 2012 Chin. J. Phys. 50 618
[24] Hou G L and Liu J C 2010 Chin. Phys. B 19 110305
[25] Tian N S, Xia Z Q and Wei C M 2005 Acta Phys. Sin. 54 2463 (in Chinese)
[26] Elwakil S A, El-labany S K, Zahran M A and Sabry R 2004 Chaos, Solitons and Fractals 19 1083
[27] Zhu F B, Zang Q P and Ji J 2010 Appl. Math. Comput. 216 2766
[28] Oldham K B and Spanier J 1974 The Fractional Calculus (New York: Academic Press)
[29] Jumarie G 2006 Comput. Math. Appl. 51 1367
[30] Odibat Z and Momani S 2008 Chaos, Solitons and Fractals 36 167
[31] Zhang S, Zong Q A, Liu D and Gao Q 2010 Communications in Fractional Calculus 1 48
[32] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[33] Okb Elbab A S and Ghany H A 2010 Int. J. Pure Appl. Math. 64 9
[34] Benth E and Gjerde J 1998 Potential Anal. 2 179
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[5] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[6] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[7] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
[10] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[11] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[12] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[13] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[14] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[15] Average consensus of multi-agent systems with communication time delays and noisy links
Sun Yong-Zheng (孙永征), Li Wang (李望), Ruan Jiong (阮炯). Chin. Phys. B, 2013, 22(3): 030510.
No Suggested Reading articles found!