Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040202    DOI: 10.1088/1674-1056/26/4/040202
GENERAL Prev   Next  

Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order

Qiu-Yan He(何秋燕)1, Bo Yu(余波)2, Xiao Yuan(袁晓)1
1 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;
2 College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China
Abstract  The performance analysis of the generalized Carlson iterating process, which can realize the rational approximation of fractional operator with arbitrary order, is presented in this paper. The reasons why the generalized Carlson iterating function possesses more excellent properties such as self-similarity and exponential symmetry are also explained. K-index, P-index, O-index, and complexity index are introduced to contribute to performance analysis. Considering nine different operational orders and choosing an appropriate rational initial impedance for a certain operational order, these rational approximation impedance functions calculated by the iterating function meet computational rationality, positive reality, and operational validity. Then they are capable of having the operational performance of fractional operators and being physical realization. The approximation performance of the impedance function to the ideal fractional operator and the circuit network complexity are also exhibited.
Keywords:  fractional calculus      fractional operator      generalized Carlson iterating process      approximation error  
Received:  09 November 2016      Revised:  13 January 2017      Accepted manuscript online: 
PACS:  02.30.Vv (Operational calculus)  
  02.60.Gf (Algorithms for functional approximation)  
  84.30.Bv (Circuit theory)  
Corresponding Authors:  Xiao Yuan     E-mail:  sichuanyuanxiao@sina.com

Cite this article: 

Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓) Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order 2017 Chin. Phys. B 26 040202

[1] Hu K X and Zhu K Q 2009 Chin. Phys. Lett. 26 108301
[2] Kumar R and Gupta V 2013 Chin. Phys. B 22 074601
[3] Ghany H A and Hyder A A 2014 Chin. Phys. B 23 060503
[4] Wang F Q and Ma X K 2013 Chin. Phys. B 22 120504
[5] Yu B, Yuan X and Tao L 2015 J. Electr. Inf. Technol. 37 21
[6] Pu Y F and Yuan X 2016 IEEE Access 4 1872
[7] Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp. 218-256
[8] Carlson G and Halijak C 1962 IRE Trans. Circuit Theory 9 302
[9] Carlson G and Halijak C 1964 IEEE Trans. Circuit Theory 11 210
[10] Steiglits K 1964 IEEE Trans. Circuit Theory 11 160
[11] Halijak C 1964 IEEE Trans. Circuit Theory 11 494
[12] Roy S D 1967 IEEE Trans. Circuit Theory 14 264
[13] Liao K, Yuan X, Pu Y F and Zhou J L 2006 J. Sichuan Univ. (Nat. Sci. Edn.) 43 104
[14] Ren Y and Yuan X 2008 J. Sichuan Univ. (Nat. Sci. Edn.) 45 1100
[15] Krishna B T and Reddy K V V S 2008 Acta Passive Electron. Compon. 2008 369421
[16] Krishna B T 2011 Signal Process. 91 386
[17] Liu Y, Pu Y F, Shen X D, Zhou J L 2012 J. Sichuan Univ. (Eng. Sci. Edn.) 44 153
[18] Chen Y Q and Vinagre B M and Podlubny I 2004 Nonlinear Dynam. 38 155
[19] Onat C, Sahin M and Yaman Y 2012 Aircr. Eng. Aerosp. Tec. 84 203
[20] Sun H H, Abdelwahab A A and Onaral B 1984 IEEE T. Automat. Control 29 441
[21] Zou D, Yuan X, Tao C Q and Yang Q 2013 J. Sichuan Univ. (Nat. Sci. Edn.) 50 293
[22] He Q Y and Yuan X 2016 Acta Phys. Sin. 65 160202 (in Chinese)
[23] Editorial Board 2002 Mathematics Dictionary (Taiyuan: Education Press)
[24] Valkenburg V M E (translated by Yang X J, Zheng J L, Yang W L) 1982 Network Synthesis (Beijing: Science Press) pp. 222-225 (in Chinese)
[25] Zu Y X and Lu Y Q 2007 Network Analysis and Synthesis (Beijing: China Machine Press) pp. 111-120 (in Chinese)
[26] Liu S H 1985 Phys. Rev. Lett. 55 529
[27] Kaplan T and Gray L J 1985 Phys. Rev. B 32 7360
[28] Kaplan T, Liu S H and Gray L J 1986 Phys. Rev. B 34 4870
[29] Kaplan T, Gray L J and Liu S H 1987 Phys. Rev. B 35 5379
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[5] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[6] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[9] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[10] Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof
Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Sun Chang-Yin (孙长银), Wei Qing-Lai (魏庆来). Chin. Phys. B, 2013, 22(9): 090502.
[11] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[12] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[13] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[14] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
Wei Han-Yu (魏含玉), Xia Tie-Cheng (夏铁成 ). Chin. Phys. B, 2012, 21(11): 110203.
[15] Exact solutions for nonlinear partial fractional differential equations
Khaled A. Gepreel, Saleh Omran. Chin. Phys. B, 2012, 21(11): 110204.
No Suggested Reading articles found!