Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 030303    DOI: 10.1088/1674-1056/ada549
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Continuous-variable quantum secure direct communication based on N-APSK with Boltzmann-Maxwell distribution

Zheng-Wen Cao(曹正文), Yu-Jie Zhang(张昱洁), Geng Chai(柴庚)†, Zhang-Tao Liang(梁章韬), Xin-Lei Chen(陈欣蕾), Lei Wang(王磊), and Yu-Jie Wang(王禹杰)
Laboratory of Quantum Information and Technology, School of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  Continuous-variable quantum secure direct communication (CVQSDC) with Gaussian modulation (GM) demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states. Hence, high-speed random number generators are required to satisfy this demand, which is difficult to implement in practical applications. CVQSDC with discrete modulation (DM), correspondingly, employs a finite number of quantum states to achieve encoding, which can circumvent the shortcomings of the GM scheme. Based on the advantages of DM, the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved. Here, we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying (N-APSK), which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique. In comparison with the uniform distribution, according to 32-APSK CVQSDC, the proposed scheme extends the communication distance by about 38%, while obtaining a higher secrecy capacity at the same communication distance. Furthermore, increasing the value of N will concurrently increase the quantity of rings in the constellation, thereby facilitating enhancements of communication distance. This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication, attaining gratifying advancements in communication distance and secrecy capacity, and concurrently facilitating the integrated development of quantum communication and classical communication.
Keywords:  quantum secure direct communication      discrete-modulation      amplitude phase shift keying      Boltzmann-Maxwell distribution  
Received:  29 September 2024      Revised:  20 December 2024      Accepted manuscript online:  03 January 2025
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071381 and 62301430), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY014), Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project (Grant No. 23JK0680), and Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313011).
Corresponding Authors:  Geng Chai     E-mail:  chai.geng@nwu.edu.cn

Cite this article: 

Zheng-Wen Cao(曹正文), Yu-Jie Zhang(张昱洁), Geng Chai(柴庚), Zhang-Tao Liang(梁章韬), Xin-Lei Chen(陈欣蕾), Lei Wang(王磊), and Yu-Jie Wang(王禹杰) Continuous-variable quantum secure direct communication based on N-APSK with Boltzmann-Maxwell distribution 2025 Chin. Phys. B 34 030303

[1] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012
[2] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[3] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[4] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[5] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[6] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[7] Jin X R, Ji X, Zhang Y Q, Zhang S, Hong S K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67
[8] Cao Z W, Wang L, Liang K X, Chai G and Peng J Y 2021 Phys. Rev. Appl. 16 024012
[9] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[10] Cao Z W, Lu Y, Chai G, Yu H, Liang K X and Wang L 2023 Research 6 0193
[11] Liang K X, Cao Z W, Chen X L, Wang L, Chai G and Peng J Y 2023 Front. Phys. 18 51301
[12] Zhao P, ZhongW, DuMM, Li X Y, Zhou L and Sheng Y B 2024 Front. Phys. 19 51201
[13] Zhang Q, Du M M, Zhong W, Sheng Y B and Zhou L 2024 Ann. Phys. 536 2300407
[14] Wang L, Chai G, Cao ZW, Chen X L, Liang K X G and Peng J Y 2025 Sci. China Phys. Mech. Astron. 68 220313
[15] Niu P H, Zhou Z R,Lin Z S, Sheng Y B, Yin L G and Long G L 2018 Sci. Bull. 63 1345
[16] Wu X D, Zhou L, Zhong W and Sheng Y B 2020 Sci. Bull. 19 354
[17] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[18] Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China Phys. Mech. Astron. 63 230362
[19] Ying J W, Zhou L, Zhong W and Sheng Y B 2022 Chin. Phys. B 31 120303
[20] Zhou L, Xu B W, Zhong W and Sheng Y B 2023 Phys. Rev. Appl. 19 014036
[21] Zeng H, Du M M, Zhong W, Zhou L and Sheng Y B 2024 Fundam. Res. 4 851
[22] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[23] Grosshans F, Van Assche G,Wenger J, Brouri R, Cerf N J and Grangier Ph 2003 Nature 421 238
[24] Hirano T, Ichikawa T, Matsubara T, Ono M, Oguri Y, Namiki R, Kasai K, Matsumoto R and Tsurumaru T 2017 Quantum Sci. Technol. 2 024010
[25] Ghorai S,Grangier P, Diamanti E and Leverrier A 2019 Phys. Rev. X 9 021059
[26] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[27] Zhao W, Shi R H, Feng Y T and Huang D 2020 Phys. Lett. A 384 126061
[28] Wang P, Zhang Y, Lu Z G, Wang X Y and Li Y M 2023 New J. Phys. 25 023019
[29] Sych D and Leuchs G 2010 New J. Phys. 12 053019
[30] Becir A, El-Orany F A A and Wahiddin M R B 2012 Int. J. Quantum Inf. 10 1250004
[31] Almeida M, Pereira D, Muga N J, Facão M, Pinto A N and Silva N A 2021 Opt. Express 29 38669
[32] Almeida M, Pereira D, Facão M, Pinto A N and Silva N A 2023 J. Lightwave Technol. 41 6134
[33] Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Phys. Scr. 89 035101
[34] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[35] Gaudenzi D R, Fabregas I G A and Martinez A 2006 IEEE Trans. Wireless Commun. 5 2396
[36] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[37] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf NJ, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[38] Wu J, Lin Z, Yin L and Long G L 2019 Quantum Engineering 1 e26
[39] Denys A, Brown P and Leverrier A 2021 Quantum 5 540
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[3] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[4] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(5): 050307.
[5] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[6] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan (昌燕), Xu Chun-Xiang (许春香), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽). Chin. Phys. B, 2014, 23(1): 010305.
[7] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[8] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[9] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[10] Quantum broadcast communication with authentication
Yang Yu-Guang(杨宇光), Wang Ye-Hong(王叶红), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(7): 070304.
[11] Three-party quantum secret sharing of secure direct communication based on χ-type entangled states
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(5): 050306.
[12] Improving the security of secure deterministic communication scheme based on quantum remote state preparation
Qin Su-Juan(秦素娟) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(2): 020310.
[13] Faithful quantum secure direct communication protocol against collective noise
Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹). Chin. Phys. B, 2010, 19(11): 110306.
[14] Teleportation attack on the QSDC protocol with a random basis and order
Gao Fei(高飞), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣). Chin. Phys. B, 2008, 17(9): 3189-3193.
[15] Circular threshold quantum secret sharing
Yang Yu-Guang(杨宇光) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2008, 17(2): 419-423.
No Suggested Reading articles found!