Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 026102    DOI: 10.1088/1674-1056/ad9c42
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-burn-up structure evolution in polycrystalline UO2: Phase-field modeling investigation

Dan Sun(孙丹)1,†, Yanbo Jiang(姜彦博)2,†, Chuanbao Tang(唐传宝)1, Yong Xin(辛勇)1, Zhipeng Sun(孙志鹏)1, Wenbo Liu(柳文波)2, and Yuanming Li(李垣明)1,‡
1 National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China;
2 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety. In this study, a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO$_{2}$. The formation and growth of recrystallized grains were initially investigated. It was demonstrated that recrystallization kinetics adhere to the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation, and that recrystallization represents a process of free-energy reduction. Subsequently, the microstructural evolution in UO$_{2}$ was analyzed as the burn up increased. Gas bubbles acted as additional nucleation sites, thereby augmenting the recrystallization kinetics, whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries. The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings. Furthermore, the influence of grain size on microstructure evolution was investigated. Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures.
Keywords:  high-burn-up structure      phase field      uranium dioxide      gas bubble      recrystallization  
Received:  26 September 2024      Revised:  10 November 2024      Accepted manuscript online:  10 December 2024
PACS:  61.80.Az (Theory and models of radiation effects)  
  62.20.D- (Elasticity)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
Fund: This study was supported by the National Natural Science Foundation of China (Grant Nos. U20B2013 and 12205286) and the National Key Research and Development Program of China (Grant No. 2022YFB1902401).
Corresponding Authors:  Yuanming Li     E-mail:  lym_npic@126.com

Cite this article: 

Dan Sun(孙丹), Yanbo Jiang(姜彦博), Chuanbao Tang(唐传宝), Yong Xin(辛勇), Zhipeng Sun(孙志鹏), Wenbo Liu(柳文波), and Yuanming Li(李垣明) High-burn-up structure evolution in polycrystalline UO2: Phase-field modeling investigation 2025 Chin. Phys. B 34 026102

[1] Ho M, Obbard E and Burr P A 2019 Energy Procedia 160 459
[2] Zinkle S J and Was G S 2013 Acta. Mater. 61 735
[3] Rest J, Cooper M, Spino J, Turnbull J, Van Uffelen P and Walker C 2019 J. Nucl. Mater. 513 310
[4] Cornell R M 1971 J. Nucl. Mater. 38 319
[5] Une K, Kashibe S and Takagi A 2006 J. Nucl. Sci. Technol. 43 1161
[6] Turnbull J A 1971 J. Nucl. Mater. 38 203
[7] Kashibe S and Une K 1991 J. Nucl. Mater. 28 1090
[8] Rondinella V V and Wiss T 2010 Mater. Today 13 24
[9] Matzke H 1992 J. Nucl. Mater. 189 141
[10] Ray I, Thiele H A and Kinoshita M 1997 J. Nucl. Mater. 245 115
[11] Spino J, Stalios A D, Santa H and Baron D 2006 J. Nucl. Mater. 354 66
[12] Matzke H J and Kinoshit M 1997 J. Nucl. Mater. 247 108
[13] Marchetti M, Laux D, Fongaro L, Wiss T, Van Uffelen P, Despaux G and Rondinella V V 2017 J. Nucl. Mater 494 322
[14] Terrani K A, BaloochM, Burns J R and Smith Q B 2018 J. Nucl. Mater. 508 33
[15] Baron D, Kinoshita M, Thevenin P and Largenton R 2008 Nucl. Eng. Technol. 41 199
[16] Matze H and Spino J 1997 J. Nucl. Mater. 248 170
[17] Rest J and Hofman G L 2000 J. Nucl. Mater. 277 231
[18] Nogita K and Une K 1995 J. Nucl. Mater. 226 302
[19] Lee C B and Jung Y H 2000 J. Nucl. Mater. 279 207
[20] Gerezak T J, Parish C M, Edmondson P D, Baldwon C A and Terrani K A 2018 J. Nucl. Mater. 509 245
[21] Miao Y B, Yao T K, Lian J, Zhu S, Bhattacharya S, Oaks A, Yacout A M and Mo K 2018 Scripta Mater. 155 169
[22] Xiao H X, Long C S and Chen H S 2021 J. Nucl. Mater. 556 153151
[23] Rest J 2004 J. Nucl. Mater. 326 175
[24] Pizzocri D, Cappia F, Luzzi L, Pastore G, Rondinella V V and Van Uffelen P 2017 J. Nucl. Mater. 487 23
[25] Veshchunov M S and Tarasov V I 2017 J. Nucl. Mater. 488 191
[26] AbdoelatefMG, Badry F, Schwen D, Permann C, Zhang Y and Ahmed K 2019 JOM 71 4817
[27] Liang L Y, Mei Z G, Kim Y S, Ye B, Hofman G, Anitescu M and Yacout A M 2016 Comput. Mater. Sci. 124 228
[28] Jiang Y B, Xin Y, Liu W B, Sun Z P, Chen P, Sun D, Zhou M Y, Liu X and Yun D 2022 Nucl. Eng. Technol. 54 226
[29] Chen L Q and Yang W 1994 Phys. Rev. B 50 15752
[30] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
[31] Millett P C, El-Azab A and Wolf D 2011 Comput. Mater. Sci. 50 960
[32] Kittel C and Kroemer H 1980 Thermal Physics (New York)
[33] Aageen L K, Biswas S, Jiang W, Andersson D, Cooper M W D and Matthews C 2021 J. Nucl. Mater. 557 153267
[34] Nogita K and Une K 1994 Nucl. Instrum. Meth. B 91 301
[35] Millett P C, El-Azab A, Rokkam S, Tonks M and Wolf D 2011 Comp. Mater. Sci. 50 949
[36] Rest J and Hofman G L 1994 ANL/ET/PP-84776 Argonne National Lab
[37] Liang L Y, Mei Z G, Kim Y S, Anitescu M and Yacout A M 2018 Comp. Mater. Sci. 145 86
[38] Zhu J Z, Chen L Q, Shen J and Tikare V 1999 Phys. Rev. E 60 3564
[39] Schoenes J 1978 J. Appl. Phys. 49 1463
[40] Veshchunov M S 2000 J. Nucl. Mater. 277 67
[41] Matzke H J, Inoue T and Warren R 1980 J. Nucl. Mater. 91 205
[42] Nerikar P V, Rudman K, Desai T G, Byler D, Unal C, McClellan K J, Phillpot S R, Sinnott S B, Peralta P, Uberuaga B P and Stanek C R 2011 J. Am. Ceram. Soc. 94 1893
[43] Andersson D A, Uberuaga B P, Nerikar P V, Unal C and Stanek C R 2011 Phys. Rev. B 84 054105
[44] Matthews C, Perriot R and Cooper M W D 2019 J. Nucl. Mater. 527 151787
[45] Turnbull J A, Friskney C A, Findlay I R, Johnson F A and Walter A J 1982 J. Nucl. Mater. 107 168
[46] Jiang, Y B, La Y X, Liu X X and Liu W B 2024 J. Nucl. Mater. 601 155312
[47] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A and Tomita Y 2008 Mater. Trans. 49 2559
[48] Vedantam S and Mallick A 2009 Acta Mater. 58 272
[49] Avrami M 1939 J. Chem. Phys. 7 1103
[50] Avrami M 1940 J. Chem. Phys. 8 212
[51] Barani T, Pizzocri D, Cappia F, Luzzi L, Pastore G and Van Uffelen P 2020 J. Nucl. Mater. 539 152296
[52] Gerczak T J, Parish C M, Edmondson P D, Baldwin C A and Terrani K A 2018 J. Nucl. Mater. 509 245
[53] Hiernaut J P, Wiss T, Colle J Y, Thiele H, Walker C T, Goll W and Konings R J M 2008 J. Nucl. Mater. 377 313
[54] Massih A 2014 Swedish Radiation Safety Authority, Uppsala Sweden
[55] Noirot J, Pontillon Y, Yagnik S and Turnbull J A 2015 J. Nucl. Mater. 462 77
[56] Sun D, Yang Q, Zhao J, Gao S, Xin Y, Zhou Y, Yin C, Chen P, Zhao J and Wang Y 2024 Chin. Phys. B 33 016105
[57] Xiao H X, Long C S and Chen H S 2016 J. Nucl. Mater. 471 74
[58] Une K, Nogita K, Kashibe S and Imamura M 1992 J. Nucl. Mater. 188 65
[1] Exploration of the coupled lattice Boltzmann model based on a multiphase field model: A study of the solid-liquid-gas interaction mechanism in the solidification process
Chang-Sheng Zhu(朱昶胜), Li-Jun Wang(王利军), Zi-Hao Gao(高梓豪), Shuo Liu(刘硕), and Guang-Zhao Li(李广召). Chin. Phys. B, 2024, 33(3): 038101.
[2] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[3] GPU parallel computation of dendrite growth competition in forced convection using the multi-phase-field-lattice Boltzmann model
Zi-Hao Gao(高梓豪), Chang-Sheng Zhu(朱昶胜), and Cang-Long Wang(王苍龙). Chin. Phys. B, 2023, 32(7): 078101.
[4] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[5] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[6] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[7] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[8] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[9] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[10] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[11] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[12] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[13] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[14] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[15] Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞)†, Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), and Jie Liu(刘杰)‡. Chin. Phys. B, 2020, 29(10): 106103.
No Suggested Reading articles found!