CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
High-burn-up structure evolution in polycrystalline UO2: Phase-field modeling investigation |
Dan Sun(孙丹)1,†, Yanbo Jiang(姜彦博)2,†, Chuanbao Tang(唐传宝)1, Yong Xin(辛勇)1, Zhipeng Sun(孙志鹏)1, Wenbo Liu(柳文波)2, and Yuanming Li(李垣明)1,‡ |
1 National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China; 2 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety. In this study, a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO$_{2}$. The formation and growth of recrystallized grains were initially investigated. It was demonstrated that recrystallization kinetics adhere to the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation, and that recrystallization represents a process of free-energy reduction. Subsequently, the microstructural evolution in UO$_{2}$ was analyzed as the burn up increased. Gas bubbles acted as additional nucleation sites, thereby augmenting the recrystallization kinetics, whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries. The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings. Furthermore, the influence of grain size on microstructure evolution was investigated. Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures.
|
Received: 26 September 2024
Revised: 10 November 2024
Accepted manuscript online: 10 December 2024
|
PACS:
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
62.20.D-
|
(Elasticity)
|
|
61.72.Qq
|
(Microscopic defects (voids, inclusions, etc.))
|
|
Fund: This study was supported by the National Natural Science Foundation of China (Grant Nos. U20B2013 and 12205286) and the National Key Research and Development Program of China (Grant No. 2022YFB1902401). |
Corresponding Authors:
Yuanming Li
E-mail: lym_npic@126.com
|
Cite this article:
Dan Sun(孙丹), Yanbo Jiang(姜彦博), Chuanbao Tang(唐传宝), Yong Xin(辛勇), Zhipeng Sun(孙志鹏), Wenbo Liu(柳文波), and Yuanming Li(李垣明) High-burn-up structure evolution in polycrystalline UO2: Phase-field modeling investigation 2025 Chin. Phys. B 34 026102
|
[1] Ho M, Obbard E and Burr P A 2019 Energy Procedia 160 459 [2] Zinkle S J and Was G S 2013 Acta. Mater. 61 735 [3] Rest J, Cooper M, Spino J, Turnbull J, Van Uffelen P and Walker C 2019 J. Nucl. Mater. 513 310 [4] Cornell R M 1971 J. Nucl. Mater. 38 319 [5] Une K, Kashibe S and Takagi A 2006 J. Nucl. Sci. Technol. 43 1161 [6] Turnbull J A 1971 J. Nucl. Mater. 38 203 [7] Kashibe S and Une K 1991 J. Nucl. Mater. 28 1090 [8] Rondinella V V and Wiss T 2010 Mater. Today 13 24 [9] Matzke H 1992 J. Nucl. Mater. 189 141 [10] Ray I, Thiele H A and Kinoshita M 1997 J. Nucl. Mater. 245 115 [11] Spino J, Stalios A D, Santa H and Baron D 2006 J. Nucl. Mater. 354 66 [12] Matzke H J and Kinoshit M 1997 J. Nucl. Mater. 247 108 [13] Marchetti M, Laux D, Fongaro L, Wiss T, Van Uffelen P, Despaux G and Rondinella V V 2017 J. Nucl. Mater 494 322 [14] Terrani K A, BaloochM, Burns J R and Smith Q B 2018 J. Nucl. Mater. 508 33 [15] Baron D, Kinoshita M, Thevenin P and Largenton R 2008 Nucl. Eng. Technol. 41 199 [16] Matze H and Spino J 1997 J. Nucl. Mater. 248 170 [17] Rest J and Hofman G L 2000 J. Nucl. Mater. 277 231 [18] Nogita K and Une K 1995 J. Nucl. Mater. 226 302 [19] Lee C B and Jung Y H 2000 J. Nucl. Mater. 279 207 [20] Gerezak T J, Parish C M, Edmondson P D, Baldwon C A and Terrani K A 2018 J. Nucl. Mater. 509 245 [21] Miao Y B, Yao T K, Lian J, Zhu S, Bhattacharya S, Oaks A, Yacout A M and Mo K 2018 Scripta Mater. 155 169 [22] Xiao H X, Long C S and Chen H S 2021 J. Nucl. Mater. 556 153151 [23] Rest J 2004 J. Nucl. Mater. 326 175 [24] Pizzocri D, Cappia F, Luzzi L, Pastore G, Rondinella V V and Van Uffelen P 2017 J. Nucl. Mater. 487 23 [25] Veshchunov M S and Tarasov V I 2017 J. Nucl. Mater. 488 191 [26] AbdoelatefMG, Badry F, Schwen D, Permann C, Zhang Y and Ahmed K 2019 JOM 71 4817 [27] Liang L Y, Mei Z G, Kim Y S, Ye B, Hofman G, Anitescu M and Yacout A M 2016 Comput. Mater. Sci. 124 228 [28] Jiang Y B, Xin Y, Liu W B, Sun Z P, Chen P, Sun D, Zhou M Y, Liu X and Yun D 2022 Nucl. Eng. Technol. 54 226 [29] Chen L Q and Yang W 1994 Phys. Rev. B 50 15752 [30] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258 [31] Millett P C, El-Azab A and Wolf D 2011 Comput. Mater. Sci. 50 960 [32] Kittel C and Kroemer H 1980 Thermal Physics (New York) [33] Aageen L K, Biswas S, Jiang W, Andersson D, Cooper M W D and Matthews C 2021 J. Nucl. Mater. 557 153267 [34] Nogita K and Une K 1994 Nucl. Instrum. Meth. B 91 301 [35] Millett P C, El-Azab A, Rokkam S, Tonks M and Wolf D 2011 Comp. Mater. Sci. 50 949 [36] Rest J and Hofman G L 1994 ANL/ET/PP-84776 Argonne National Lab [37] Liang L Y, Mei Z G, Kim Y S, Anitescu M and Yacout A M 2018 Comp. Mater. Sci. 145 86 [38] Zhu J Z, Chen L Q, Shen J and Tikare V 1999 Phys. Rev. E 60 3564 [39] Schoenes J 1978 J. Appl. Phys. 49 1463 [40] Veshchunov M S 2000 J. Nucl. Mater. 277 67 [41] Matzke H J, Inoue T and Warren R 1980 J. Nucl. Mater. 91 205 [42] Nerikar P V, Rudman K, Desai T G, Byler D, Unal C, McClellan K J, Phillpot S R, Sinnott S B, Peralta P, Uberuaga B P and Stanek C R 2011 J. Am. Ceram. Soc. 94 1893 [43] Andersson D A, Uberuaga B P, Nerikar P V, Unal C and Stanek C R 2011 Phys. Rev. B 84 054105 [44] Matthews C, Perriot R and Cooper M W D 2019 J. Nucl. Mater. 527 151787 [45] Turnbull J A, Friskney C A, Findlay I R, Johnson F A and Walter A J 1982 J. Nucl. Mater. 107 168 [46] Jiang, Y B, La Y X, Liu X X and Liu W B 2024 J. Nucl. Mater. 601 155312 [47] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A and Tomita Y 2008 Mater. Trans. 49 2559 [48] Vedantam S and Mallick A 2009 Acta Mater. 58 272 [49] Avrami M 1939 J. Chem. Phys. 7 1103 [50] Avrami M 1940 J. Chem. Phys. 8 212 [51] Barani T, Pizzocri D, Cappia F, Luzzi L, Pastore G and Van Uffelen P 2020 J. Nucl. Mater. 539 152296 [52] Gerczak T J, Parish C M, Edmondson P D, Baldwin C A and Terrani K A 2018 J. Nucl. Mater. 509 245 [53] Hiernaut J P, Wiss T, Colle J Y, Thiele H, Walker C T, Goll W and Konings R J M 2008 J. Nucl. Mater. 377 313 [54] Massih A 2014 Swedish Radiation Safety Authority, Uppsala Sweden [55] Noirot J, Pontillon Y, Yagnik S and Turnbull J A 2015 J. Nucl. Mater. 462 77 [56] Sun D, Yang Q, Zhao J, Gao S, Xin Y, Zhou Y, Yin C, Chen P, Zhao J and Wang Y 2024 Chin. Phys. B 33 016105 [57] Xiao H X, Long C S and Chen H S 2016 J. Nucl. Mater. 471 74 [58] Une K, Nogita K, Kashibe S and Imamura M 1992 J. Nucl. Mater. 188 65 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|