SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Pressure-induced superconductivity and phase transition in PbSe and PbTe |
Yuyang Jiang(江宇阳)1,†, Cuiying Pei(裴翠颖)1,†, Qi Wang(王琦)1,2, Juefei Wu(吴珏霏)1, Lili Zhang(张丽丽)3, Chao Xiong(熊超)1, and Yanpeng Qi(齐彦鹏)1,2,4,‡ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China; 3 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; 4 Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China |
|
|
Abstract The IV-VI semiconducting chalcogenides are a large material family with distinct physical behavior. Here, we systematically investigate the effect of pressure on the electronic and crystal structures of PbSe and PbTe by combining high-pressure electrical transport and synchrotron x-ray diffraction (XRD) measurements. The resistivity of PbSe and PbTe changes dramatically under high pressure and a non-monotonic evolution of $\rho (T)$ is observed. Both PbSe and PbTe are found to undergo semiconductor-metal transition upon compression and show superconductivity under higher pressure. The structural evolutions from the Fm$\bar{3}m$ to Pnma phase and then to the Pm$\bar{3}m$ phase in PbSe are verified by the x-ray diffraction. The present findings reveal the internal correlation between the structural evolution and the physical properties in lead chalcogenides.
|
Received: 29 September 2024
Revised: 01 November 2024
Accepted manuscript online: 05 November 2024
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52272265) and the National Key R&D Program of China (Grant No. 2023YFA1607400). The authors thank the support from Analytical Instrumentation Center (# SPSTAIC10112914), SPST, ShanghaiTech University. |
Corresponding Authors:
Yanpeng Qi
E-mail: qiyp@shanghaitech.edu.cn
|
Cite this article:
Yuyang Jiang(江宇阳), Cuiying Pei(裴翠颖), Qi Wang(王琦), Juefei Wu(吴珏霏), Lili Zhang(张丽丽), Chao Xiong(熊超), and Yanpeng Qi(齐彦鹏) Pressure-induced superconductivity and phase transition in PbSe and PbTe 2024 Chin. Phys. B 33 126105
|
[1] Zhou X, Zhang Q, Gan L, Li H, Xiong J and Zhai T 2016 Adv. Sci. 3 1600177 [2] Dobrowolski W, Arciszewska M, Brodowska B, Domukhovski V, Dugaev V, Grzeda A, Kuryliszyn-Kudelska I, Wojcik M and Slynko E 2006 Sci. Sintering 38 109 [3] Xiao G, Wang Y, Ning J, Wei Y, Liu B, William W Y, Zou G and Zou B 2013 RSC Adv. 3 8104 [4] Korkosz R J, Chasapis T C, Lo S H, Doak J W, Kim Y J, Wu C I, Hatzikraniotis E, Hogan T P, Seidman D N and Wolverton C 2014 J. Am. Chem. Soc. 136 3225 [5] Fu H and Tsang S W 2012 Nanoscale 4 2187 [6] Matsunaga T, Akola J, Kohara S, Honma T, Kobayashi K, Ikenaga E, Jones R O, Yamada N, Takata M and Kojima R 2011 Nat. Mater. 10 129 [7] Xu K, Miao X and Xu M 2019 Phys. Status Solidi Rapid Res. Lett. 13 1800506 [8] Chattopadhyay T, Werner A, Von Schnering H and Pannetier J 1984 Revue de Physique Appliquee 19 807 [9] Cheng H, Yao H, Xu Y, Jiang J, Yang Y, Wang J, Li X, Li Y and Shao J 2024 Chem. Mater. 36 3764 [10] Pei C, Zhang J, Wang Q, Zhao Y, Gao L, Gong C, Tian S, Luo R, Li M and Yang W 2023 Natl. Sci. Rev. 10 nwad034 [11] Pei C, Huang P, Zhu P, Liu L, Wang Q, Zhao Y, Gao L, Li C, Cao W and Lv J 2022 Cell Rep. Phys. Sci. 3 101094 [12] Sun J, Jiao Y, Yi C, Dissanayake S, Matsuda M, Uwatoko Y, Shi Y, Li Y, Fang Z and Cheng J G 2019 Phys. Rev. Lett. 123 047201 [13] Yu H, Gao D, Wang X, Du X, Lin X, Guo W, Zou R, Jin C, Li K and Chen Y 2018 NPG Asia Mater. 10 882 [14] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17013 [15] Zhu S, Zhu B, Pei C, Wang Q, Chen J, Zhang Q, Ying T, Gu L, Zhao Y and Li C 2024 Mater. Today Phys. 42 101377 [16] Li T, Wang S, Chen X, Chen C, Fang Y and Yang Z 2024 Chin. Phys. B 33 066401 [17] Dias R P, Kim M and Yoo C S 2016 Phys. Rev. B. 93 104107 [18] Wang S, Zang C, Wang Y, Wang L, Zhang J, Childs C, Ge H, Xu H, Chen H and He D 2015 Inorg. Chem. 54 4981 [19] Ehm L, Knorr K, Dera P, Krimmel A, Bouvier P and Mezouar M 2004 J. Phys.: Condens. Matter 16 3545 [20] Onodera A, Sakamoto I, Fujii Y, Mo N and Sugai S 1997 Phys. Rev. B 56 7935 [21] Zhou D, Li Q, Ma Y, Cui Q and Chen C 2013 J. Phys. Chem. C 117 5352 [22] Li Y, Lin C, Xu J, Li G, Li X and Liu J 2014 AIP Adv. 4 127112 [23] Rousse G, Klotz S, Saitta A, Rodriguez-Carvajal J, McMahon M, Couzinet B and Mezouar M 2005 Phys. Rev. B 71 224116 [24] Pei C, Zhu P, Li B, Zhao Y, Gao L, Li C, Zhu S, Zhang Q, Ying T and Gu L 2023 Sci. China Mater. 66 2822 [25] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Ponosov Y S, Mogilenskikh V E, Vokhmyanin A P, Ancharov A I and Skipetrov E P 2009 Phys. Status Solidi (b) 246 615 [26] Lv X, Li S, Huang Y and Cui T 2024 Phys. Rev. B 110 054107 [27] Chen X, Lu P, Wang X, Zhou Y, An C, Zhou Y, Xian C, Gao H, Guo Z and Park C 2017 Phys. Rev. B 96 165123 [28] Li Y, Lin C, Li H, Li X and Liu J 2013 High Pressure Res. 33 713 [29] Barone P, Rauch T, Di Sante D, Henk J, Mertig I and Picozzi S 2013 Phys. Rev. B 88 045207 [30] Ravindran R and Asokamani R 1994 AIP Conf. Proc. 309 669 [31] Timofeev Y A, Vinogradov B and Begoulev V 1997 Phys. Solid State 39 207 [32] Timofeev Y A, Vinogradov B, Begoulev V and Yakovlev E N 1986 Fizika Tverdogo Tela 28 2841 [33] Brandt N, Gitsu D, Popovich N, Sidorov V and Chudinov S 1975 JETP Lett. 22 104 [34] Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 [35] Pei C, Ying T, Zhao Y, Gao L, Cao W, Li C, Hosono H and Qi Y 2022 Matter Radiat. Extremes 7 038404 [36] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y and Li G 2021 Adv. Mater. 33 2102813 [37] Pei C, Zhang J, Gong C, Wang Q, Gao L, Zhao Y, Tian S, Cao W, Li C and Lu Z Y 2022 Sci. China Phys., Mech. Astron. 65 287412 [38] Zhao Y, Ying T, Zhao L, Wu J, Pei C, Chen J, Deng J, Zhang Q, Gu L and Wang Q 2024 Adv. Mater. 36 2401118 [39] Mao H, Xu J A and Bell P 1986 J. Geophys. Res.: Solid Earth 91 4673 [40] Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z and Chen X J 2019 Nat. Mater. 18 1321 [41] Zhang H, Zhong W, Meng Y, Yue B, Yu X, Wang J T and Hong F 2023 Phys. Rev. B 107 174502 [42] Wang Y, Wang K, Ma Y, Zhou M, Wang H and Liu G 2021 J. Phys.: Condens. Matter 33 355403 [43] Matsumoto R, Song P, Adachi S, Saito Y, Hara H, Yamashita A, Nakamura K, Yamamoto S, Tanaka H and Irifune T 2019 Phys. Rev. B 99 184502 [44] Werthamer N, Helfand E and Hohenberg P 1966 Phys. Rev. 147 295 [45] Xu H S, Yan Y J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y and Feng D L 2021 Phys. Rev. Lett. 127 187004 [46] Noat Y, Silva-Guillen J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W and Cario L 2015 Phys. Rev. B 92 134510 [47] Zocco D, Grube K, Eilers F, Wolf T and Lohneysen H V 2013 Phys. Rev. Lett. 111 057007 [48] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Nature 418 758 [49] Kohara T, Oda T, Ueda K, Yamada Y, Mahajan A, Elankumaran K, Hossian Z, Gupta L, Nagarajan R and Vijayaraghavan R 1995 Phys. Rev. B 51 3985 [50] Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z and Chen X J 2021 Phys. Rev. B 103 214516 [51] Chen L C, Yu H, Wang X Y, Zhang Q, Struzhkin V V and Chen X J 2022 Phys. Rev. B 105 174503 [52] Wang E, Zhu X and Wen H H 2016 Europhys. Lett. 115 27007 [53] Woollam J A, Somoano R B and O’Connor P 1974 Phys. Rev. Lett. 32 712 [54] Jones C, Hulm J and Chandrasekhar B 1964 Rev. Mod. Phys. 36 74 [55] Talantsev E F 2022 Rev. Sci. Instrum. 93 053912 [56] Wang S, Zhang J, Zhang Y, Alvarado A, Attapattu J, He D, Wang L, Chen C and Zhao Y 2013 Inorg. Chem. 52 8638 [57] Li X, Sun J, Shahi P, Gao M, MacDonald A H, Uwatoko Y, Xiang T, Goodenough J B, Cheng J and Zhou J 2018 Proc. Natl. Acad. Sci. USA 115 9935 [58] Zhang J, Hu T, Yan J, Ke F, Wang J, Cui X, Li X, Ma Y, Yang J and Gao C 2017 Mater. Lett. 209 78 [59] Zhu S, Wu J, Zhu P, Pei C, Wang Q, Jia D, Wang X, Zhao Y, Gao L and Li C 2023 Adv. Sci. 10 2301332 [60] Qi Y, Shi W, Naumov P G, Kumar N, Sankar R, Schnelle W, Shekhar C, Chou F C, Felser C and Yan B 2017 Adv. Mater. 29 1605965 [61] Li Y, Zhou P, Ding C, Lu Q, Wang X and Sun J 2024 Chin. Phys. B 33 106102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|