|
|
Proton acceleration in plasma turbulence driven by high-energy lepton jets |
Gaowei Zhang(张高维)1,2, Zhengming Sheng(盛政明)1,2,3,†, Suming Weng(翁苏明)1,2, Min Chen(陈民)1,2, and Jie Zhang(张杰)1,2,3 |
1 Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China; 3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China |
|
|
Abstract The interaction of high energy lepton jets composed of electrons and positrons with background electron-proton plasma is investigated numerically based upon particle-in-cell simulation, focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence. Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media. When such a jet is injected into the background plasma, the Weibel instability is excited quickly, which leads to the development of plasma turbulence into the nonlinear stage. The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration, where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles. Because of background plasma acceleration, a collisionless electrostatic shock wave is formed, where some pre-accelerated protons are further accelerated when passing through the shock wave front. Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated. For a given background plasma density, the maximum proton energy generally increases both with the density and kinetic energy of the injected jet. Moreover, for a homogeneous background plasma, the proton acceleration via both turbulent fields and collisionless shocks is found to be significant. In the case of an inhomogeneous plasma, the proton acceleration in the plasma turbulence is dominant. Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.
|
Received: 15 August 2024
Revised: 09 September 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
52.35.-g
|
(Waves, oscillations, and instabilities in plasmas and intense beams)
|
|
52.35.Ra
|
(Plasma turbulence)
|
|
52.35.Tc
|
(Shock waves and discontinuities)
|
|
52.35.Qz
|
(Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12135009, 11991074, 11975154, and 12005287). |
Corresponding Authors:
Zhengming Sheng
E-mail: zmsheng@sjtu.edu.cn
|
Cite this article:
Gaowei Zhang(张高维), Zhengming Sheng(盛政明), Suming Weng(翁苏明), Min Chen(陈民), and Jie Zhang(张杰) Proton acceleration in plasma turbulence driven by high-energy lepton jets 2024 Chin. Phys. B 33 115203
|
[1] Fermi E 1949 Phys. Rev. 75 1169 [2] Spitkovsky A 2008 Astrophys. J. 682 L5 [3] Ebisuzaki T and Tajima T 2014 Astropart. Phys. 56 9 [4] Tajima T, Yan X and Ebisuzaki T 2020 Rev. Mod. Plasma Phys. 4 7 [5] Bhattacharjee P and Sigl G 2000 Phys. Rep. 327 109 [6] Olinto A 2000 Phys. Rep. 333–334 329 [7] Hinton J 2009 New J. Phys. 11 055005 [8] Sinnis G 2009 New J. Phys. 11 055007 [9] Sommers P and Westerhoff S 2009 New J. Phys. 11 055004 [10] Bell A 1978 Mon. Not. Royal Astronom. Soc. 182 147 [11] Axford W, Leer E and Skadron G 1977 International Cosmic Ray Conference vol 11 (Springer) [12] Blandford R D and Ostriker J P 1978 Astrophys. J. 221 L29 [13] Rieger F M, Bosch-Ramon V and Duffy P 2007 The Multi-Messenger Approach to High-Energy Gamma-Ray Sources (Springer) pp. 119–125 [14] Gombosi T, Lorencz K and Jokipii J 1989 J. Geophys. Res. Space Phys. 94 15011 [15] Foschini L 2011 arXiv:1105.0772 [16] Lyutikov M, Pariev V I and Gabuzda D C 2005 Mon. Not. Royal Astronom. Soc. 360 869 [17] Zhang J, Sun X N, Liang E W, Lu R J, Lu Y and Zhang S N 2014 Astrophys. J. 788 104 [18] Pruet J, Abazajian K and Fuller G M 2001 Phys. Rev. D 64 063002 [19] Zhang B and Meszaros P 2004 Internat. J. Mod. Phys. A 19 2385 [20] Piran T 2004 Rev. Mod. Phys. 76 1143 [21] Peterson B M 1997 An Introduction to Active Galactic Nuclei (Cambridge University Press) [22] Reig P 2011 Astrophys. Space Sci. 332 1 [23] Gezari S 2021 Ann. Rev. Astron. Astrophys. 59 21 [24] Dyson J E and Williams D A 2020 The Physics of the Interstellar Medium (CRC Press) [25] Weibel E S 1959 Phys. Rev. Lett. 2 83 [26] Fried B D 1959 The Phys. Fluids 2 337 [27] Thompson T A, Burrows A and Meyer B S 2001 Astrophys. J. 562 887 [28] Piran T 1999 Phys. Rep. 314 575 [29] Park H S, Huntington C, Fiuza F, Drake R, Froula D, Gregori G, Koenig M, Kugland N, Kuranz C, Lamb D, et al. 2015 Phys. Plasmas 22 [30] Fiuza F, Swadling G, Grassi A, Rinderknecht H, Higginson D, Ryutov D, Bruulsema C, Drake R, Funk S, Glenzer S, et al. 2020 Nat. Phys. 16 916 [31] Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Murakami M and Sheng Z M 2022 Astrophys. J. 931 36 [32] Cui Y, Sheng Z, Lu Q, Li Y and Zhang J 2015 Sci. China Phys. Mechan. Astron. 58 105201 [33] Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, et al. 2002 Computational ScienceICCS 2002: International Conference Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III 2 (Springer) pp. 342–351 [34] Liu H, Dong Q L, Yuan D W, Liu X, Hua N, Qiao Z F, Zhu B Q, Zhu J Q, Jiang B B, Du K, et al. 2016 Chin. Phys. B 25 125201 [35] Bohdan A, Pohl M, Niemiec J, Morris P J, Matsumoto Y, Amano T, Hoshino M and Sulaiman A 2021 Phys. Rev. Lett. 126 095101 [36] Bell A 2004 Mon. Not. Royal Astronom. Soc. 353 550 [37] Peterson J R, Glenzer S and Fiuza F 2021 Phys. Rev. Lett. 126 215101 [38] Peterson J R, Glenzer S and Fiuza F 2022 Astrophys. J. Lett. 924 L12 [39] Liu P, Wu D, Hu T, Yuan D, Zhao G, Sheng Z, He X and Zhang J 2024 Phys. Rev. Lett. 132 155103 [40] Biskamp D, Schwarz E and Drake J 1996 Phys. Rev. Lett. 76 1264 [41] Mondal S, Narayanan V, Ding W J, Lad A D, Hao B, Ahmad S, Wang W M, Sheng Z M, Sengupta S, Kaw P, et al. 2012 Proc. Nat. Acad. Sci. USA 109 8011 [42] Bret A, Firpo M C and Deutsch C 2005 Phys. Rev. E 72 016403 [43] Silva L O, Fonseca R A, Tonge J W, Mori W B and Dawson J M 2002 Phys. Plasmas 9 2458 [44] Hao B, Ding W J, Sheng Z M, Ren C and Zhang J 2009 Phys. Rev. E 80 066402 [45] Cai H B, Zhu S P, Zheng C Y, He X T and Li J W 2006 Chin. Phys. Lett. 23 161 [46] Forslund D and Freidberg J 1971 Phys. Rev. Lett. 27 1189 [47] Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002 [48] Lemoine M, Gremillet L, Pelletier G and Vanthieghem A 2019 Phys. Rev. Lett. 123 035101 [49] Yuan D W and Li Y T 2015 Chin. Phys. B 24 015204 [50] Yuan D, Lei Z, Wei H, Zhang Z, Zhong J, Li Y, Ping Y, Zhang Y, Li Y, Wang F, et al. 2024 Nat. Commun. 15 5897 [51] Zhang Q, Ping Y, An W, Sun W and Zhong J 2022 Chin. Phys. B 31 065203 [52] Sarri G, Poder K, Cole J, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L, Grittani G, et al. 2015 Nat. Commun. 6 6747 [53] Jiao J, Zhang B, Yu J, Zhang Z, Yan Y, He S, Deng Z, Teng J, Hong W and Gu Y 2017 Laser and Particle Beams 35 234 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|