Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 115203    DOI: 10.1088/1674-1056/ad7b01
RAPID COMMUNICATION Prev   Next  

Proton acceleration in plasma turbulence driven by high-energy lepton jets

Gaowei Zhang(张高维)1,2, Zhengming Sheng(盛政明)1,2,3,†, Suming Weng(翁苏明)1,2, Min Chen(陈民)1,2, and Jie Zhang(张杰)1,2,3
1 Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China
Abstract  The interaction of high energy lepton jets composed of electrons and positrons with background electron-proton plasma is investigated numerically based upon particle-in-cell simulation, focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence. Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media. When such a jet is injected into the background plasma, the Weibel instability is excited quickly, which leads to the development of plasma turbulence into the nonlinear stage. The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration, where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles. Because of background plasma acceleration, a collisionless electrostatic shock wave is formed, where some pre-accelerated protons are further accelerated when passing through the shock wave front. Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated. For a given background plasma density, the maximum proton energy generally increases both with the density and kinetic energy of the injected jet. Moreover, for a homogeneous background plasma, the proton acceleration via both turbulent fields and collisionless shocks is found to be significant. In the case of an inhomogeneous plasma, the proton acceleration in the plasma turbulence is dominant. Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.
Keywords:  Weibel instability      turbulence      collisionless shock      ion acceleration  
Received:  15 August 2024      Revised:  09 September 2024      Accepted manuscript online:  14 September 2024
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.35.Ra (Plasma turbulence)  
  52.35.Tc (Shock waves and discontinuities)  
  52.35.Qz (Microinstabilities (ion-acoustic, two-stream, loss-cone, beam-plasma, drift, ion- or electron-cyclotron, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12135009, 11991074, 11975154, and 12005287).
Corresponding Authors:  Zhengming Sheng     E-mail:  zmsheng@sjtu.edu.cn

Cite this article: 

Gaowei Zhang(张高维), Zhengming Sheng(盛政明), Suming Weng(翁苏明), Min Chen(陈民), and Jie Zhang(张杰) Proton acceleration in plasma turbulence driven by high-energy lepton jets 2024 Chin. Phys. B 33 115203

[1] Fermi E 1949 Phys. Rev. 75 1169
[2] Spitkovsky A 2008 Astrophys. J. 682 L5
[3] Ebisuzaki T and Tajima T 2014 Astropart. Phys. 56 9
[4] Tajima T, Yan X and Ebisuzaki T 2020 Rev. Mod. Plasma Phys. 4 7
[5] Bhattacharjee P and Sigl G 2000 Phys. Rep. 327 109
[6] Olinto A 2000 Phys. Rep. 333–334 329
[7] Hinton J 2009 New J. Phys. 11 055005
[8] Sinnis G 2009 New J. Phys. 11 055007
[9] Sommers P and Westerhoff S 2009 New J. Phys. 11 055004
[10] Bell A 1978 Mon. Not. Royal Astronom. Soc. 182 147
[11] Axford W, Leer E and Skadron G 1977 International Cosmic Ray Conference vol 11 (Springer)
[12] Blandford R D and Ostriker J P 1978 Astrophys. J. 221 L29
[13] Rieger F M, Bosch-Ramon V and Duffy P 2007 The Multi-Messenger Approach to High-Energy Gamma-Ray Sources (Springer) pp. 119–125
[14] Gombosi T, Lorencz K and Jokipii J 1989 J. Geophys. Res. Space Phys. 94 15011
[15] Foschini L 2011 arXiv:1105.0772
[16] Lyutikov M, Pariev V I and Gabuzda D C 2005 Mon. Not. Royal Astronom. Soc. 360 869
[17] Zhang J, Sun X N, Liang E W, Lu R J, Lu Y and Zhang S N 2014 Astrophys. J. 788 104
[18] Pruet J, Abazajian K and Fuller G M 2001 Phys. Rev. D 64 063002
[19] Zhang B and Meszaros P 2004 Internat. J. Mod. Phys. A 19 2385
[20] Piran T 2004 Rev. Mod. Phys. 76 1143
[21] Peterson B M 1997 An Introduction to Active Galactic Nuclei (Cambridge University Press)
[22] Reig P 2011 Astrophys. Space Sci. 332 1
[23] Gezari S 2021 Ann. Rev. Astron. Astrophys. 59 21
[24] Dyson J E and Williams D A 2020 The Physics of the Interstellar Medium (CRC Press)
[25] Weibel E S 1959 Phys. Rev. Lett. 2 83
[26] Fried B D 1959 The Phys. Fluids 2 337
[27] Thompson T A, Burrows A and Meyer B S 2001 Astrophys. J. 562 887
[28] Piran T 1999 Phys. Rep. 314 575
[29] Park H S, Huntington C, Fiuza F, Drake R, Froula D, Gregori G, Koenig M, Kugland N, Kuranz C, Lamb D, et al. 2015 Phys. Plasmas 22
[30] Fiuza F, Swadling G, Grassi A, Rinderknecht H, Higginson D, Ryutov D, Bruulsema C, Drake R, Funk S, Glenzer S, et al. 2020 Nat. Phys. 16 916
[31] Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Murakami M and Sheng Z M 2022 Astrophys. J. 931 36
[32] Cui Y, Sheng Z, Lu Q, Li Y and Zhang J 2015 Sci. China Phys. Mechan. Astron. 58 105201
[33] Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, et al. 2002 Computational ScienceICCS 2002: International Conference Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III 2 (Springer) pp. 342–351
[34] Liu H, Dong Q L, Yuan D W, Liu X, Hua N, Qiao Z F, Zhu B Q, Zhu J Q, Jiang B B, Du K, et al. 2016 Chin. Phys. B 25 125201
[35] Bohdan A, Pohl M, Niemiec J, Morris P J, Matsumoto Y, Amano T, Hoshino M and Sulaiman A 2021 Phys. Rev. Lett. 126 095101
[36] Bell A 2004 Mon. Not. Royal Astronom. Soc. 353 550
[37] Peterson J R, Glenzer S and Fiuza F 2021 Phys. Rev. Lett. 126 215101
[38] Peterson J R, Glenzer S and Fiuza F 2022 Astrophys. J. Lett. 924 L12
[39] Liu P, Wu D, Hu T, Yuan D, Zhao G, Sheng Z, He X and Zhang J 2024 Phys. Rev. Lett. 132 155103
[40] Biskamp D, Schwarz E and Drake J 1996 Phys. Rev. Lett. 76 1264
[41] Mondal S, Narayanan V, Ding W J, Lad A D, Hao B, Ahmad S, Wang W M, Sheng Z M, Sengupta S, Kaw P, et al. 2012 Proc. Nat. Acad. Sci. USA 109 8011
[42] Bret A, Firpo M C and Deutsch C 2005 Phys. Rev. E 72 016403
[43] Silva L O, Fonseca R A, Tonge J W, Mori W B and Dawson J M 2002 Phys. Plasmas 9 2458
[44] Hao B, Ding W J, Sheng Z M, Ren C and Zhang J 2009 Phys. Rev. E 80 066402
[45] Cai H B, Zhu S P, Zheng C Y, He X T and Li J W 2006 Chin. Phys. Lett. 23 161
[46] Forslund D and Freidberg J 1971 Phys. Rev. Lett. 27 1189
[47] Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002
[48] Lemoine M, Gremillet L, Pelletier G and Vanthieghem A 2019 Phys. Rev. Lett. 123 035101
[49] Yuan D W and Li Y T 2015 Chin. Phys. B 24 015204
[50] Yuan D, Lei Z, Wei H, Zhang Z, Zhong J, Li Y, Ping Y, Zhang Y, Li Y, Wang F, et al. 2024 Nat. Commun. 15 5897
[51] Zhang Q, Ping Y, An W, Sun W and Zhong J 2022 Chin. Phys. B 31 065203
[52] Sarri G, Poder K, Cole J, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L, Grittani G, et al. 2015 Nat. Commun. 6 6747
[53] Jiao J, Zhang B, Yu J, Zhang Z, Yan Y, He S, Deng Z, Teng J, Hong W and Gu Y 2017 Laser and Particle Beams 35 234
[1] Robust autofocusing propagation in turbulence
Na-Na Liu(刘娜娜), Liu Tan(谭柳), Kai-Jian Chen(陈凯健), Pei-Long Hong(洪佩龙), Xiao-Ming Mo(莫小明), Bing-Suo Zou(邹炳锁), Yu-Xuan Ren(任煜轩), and Yi Liang(梁毅). Chin. Phys. B, 2024, 33(6): 064201.
[2] Diffraction deep neural network-based classification for vector vortex beams
Yixiang Peng(彭怡翔), Bing Chen(陈兵), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034205.
[3] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[4] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[5] Design and calibration of an elliptical crystal spectrometer for the diagnosis of proton-induced x-ray emission (PIXE)
Yanlyu Fang(方言律), Dongyu Li(李东彧), Hao Cheng(程浩), Yuan Gao(高原), Ze-Qing Shen(申泽清), Tong Yang(杨童), Yu-Ze Li(李昱泽), Ya-Dong Xia(夏亚东), Yang Yan(晏炀), Sha Yan(颜莎), Chen Lin(林晨), and Xue-Qing Yan(颜学庆). Chin. Phys. B, 2023, 32(11): 110703.
[6] Bacterial turbulence in gradient confinement
Ningzhe Yan(颜宁哲), Chenliang Xie(谢晨亮), Hao Luo(罗昊), Yanan Liu(刘亚楠), and Guangyin Jing(经光银). Chin. Phys. B, 2023, 32(11): 114704.
[7] Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华). Chin. Phys. B, 2023, 32(10): 104208.
[8] Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma
Jia-Xiang Gao(高嘉祥), Meng Liu(刘梦), and Wei-Min Wang(王伟民). Chin. Phys. B, 2023, 32(10): 105202.
[9] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[10] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[13] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[14] Preparation of graphene on SiC by laser-accelerated pulsed ion beams
Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强). Chin. Phys. B, 2021, 30(11): 116106.
[15] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
No Suggested Reading articles found!