PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma |
Jia-Xiang Gao(高嘉祥)1, Meng Liu(刘梦)2,†, and Wei-Min Wang(王伟民)1,3,4,‡ |
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micronano Devices, Renmin University of China, Beijing 100872, China; 2 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China; 3 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China; 4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to generate ion beams with quasi-monoenergetic peak and low divergence in experiments with the current ultrahigh intensity laser and thin target technologies. Here we propose a scheme that a Laguerre-Gaussian laser irradiates a near-critical-density (NCD) plasma to generate a quasi-monoenergetic and low-divergence proton beam. The Laguerre-Gaussian laser pulse in an NCD plasma excites a moving longitudinal electrostatic field with a large amplitude, and it maintains the inward bowl-shape for dozens of laser durations. This special distribution of the longitudinal electrostatic field can simultaneously accelerate and converge the protons. Our particle-in-cell (PIC) simulation shows that the efficient proton acceleration can be realized with the Laguerre-Gaussian laser intensity ranging from $3.9\times {10}^{21}$ W$\cdot$cm$^{-2}$-$1.6\times 10^{22}$ W$\cdot$cm$^{-2}$ available in the near future, e.g., a quasi-monoenergetic proton beam with peak energy $\sim 115 $ MeV and divergence angles less than 5$^\circ$ can be generated by a $5.3\times 10^{21}$ W$\cdot $cm$^{-2}$ pulse. This work could provide a reference for the high-quality ion beam generation with PWclass laser systems available recently.
|
Received: 13 May 2023
Revised: 22 June 2023
Accepted manuscript online: 05 July 2023
|
PACS:
|
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25050300), the National Natural Science Foundation of China (Grant No. 12205366), the National Key Research and Development Program of China (Grant No. 2018YFA0404801), the Fundamental Research Funds for the Central Universities (Grant No. 2020MS138), and the Research Funds of Renmin University of China (Grant No. 20XNLG01). |
Corresponding Authors:
Meng Liu, Wei-Min Wang
E-mail: liumeng@ncepu.edu.cn;weiminwang1@ruc.edu.cn
|
Cite this article:
Jia-Xiang Gao(高嘉祥), Meng Liu(刘梦), and Wei-Min Wang(王伟民) Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma 2023 Chin. Phys. B 32 105202
|
[1] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauern B, Roth M, Stöhlker T and Bagnoud V 2016 Phys. Rev. Lett. 116 205002 [2] Li A X, Qin C Y, Zhang H, Li S, Fan L L, Wang Q S, Xu T J, Wang N W, Yu L H, Xu Y, Liu Y Q, Wang C, Wang X L, Zhang Z X, Liu X Y, Bai P L, Gan Z B, Zhang X B, Wang X B, Fan C, Sun Y J, Tang Y H, Yao B, Liang X Y, Leng Y X, Shen B F, Ji L L, Li R X and Xu Z Z 2022 High Power Laser Sci. Eng. 10 e26 [3] Kim I J, Pae K H, Choi II W, Lee C L, Kim H T, Singhal H, Sung J H, Lee S K, Lee H W, Nickles P V, Jeong T M, Kim C M and Nam C H 2016 Phys. Plasmas 23 070701 [4] Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D and McKenna P 2018 Nat. Commun. 9 724 [5] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751 [6] Fuchs J, Antici P, D'Humiéres E, Lefebvre E, Borghesi M, Brambrink E, Cecchetti C A, Kaluza M, Malka V and Manclossi M 2005 Nat. Phys. 2 48 [7] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V and Pegoraro F 2002 Phys. Lett. A 299 240 [8] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D and Powell H 2001 Phys. Rev. Lett. 86 436 [9] Kitagawa Y, Mori Y, Komeda O, et al. 2015 Phys. Rev. Lett. 114 195002 [10] Beg F N, Krushelnick K, Gower C, Torn S and Dangor A E 2002 Appl. Phys. Lett. 80 3009 [11] Wang W Q, Yin Y, Zou D B, Yu T P, Yang X H, Xu H, Yu M Y, Ma Y Y, Zhuo H B and Shao F Q 2014 Chin. Phys. Lett. 31 115201 [12] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, Mackinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D and Campbell E M 2000 Phys. Rev. Lett. 85 2945 [13] Borghesi M, Mackinnon A J, Campbell D H, Hicks D G, Kar S, Patel P K, Price D, Romagnani L, Schiavi A and Willi O 2004 Phys. Rev. Lett. 92 055003 [14] Zepf M, El C, Fn B, Rj C, Ae D, Gopal A, Krushelnick K, Pa N, Tatarakis M and Wagner U 2003 Phys. Rev. Lett. 90 064801 [15] Ban H Y, Gu Y J, Kon Q, L Y Y, Zhu Z and Kawata S 2012 Chin. Phys. Lett. 29 035202 [16] Cowan T E, Fuchs J, Ruhl H, et al. 2004 Phys. Rev. Lett. 92 204801 [17] Weng S M, Liu M, Sheng Z M, Murakami M, Chen M, Yu L L and Zhang J 2016 Sci. Rep. 6 22150 [18] Dromey B, Kar S, Bellei C, Carroll D C, Clarke R J, Green J S, Kneip S, Markey K, Nagel S R, Simpson P T, Willingale L, McKenna P, Neely D, Najmudin Z, Krushelnick K, Norreys P A and Zepf M 2007 Phys. Rev. Lett. 99 85001 [19] Kar S, Ahmed H, Prasad R, Cerchez M, Brauckmann S, Aurand B, Cantono G, Hadjisolomou P, Lewis C L S, Macchi A, Nersisyan G, Robinson A P L, Schroer A M, Swantusch M, Zepf M, Willi O and Borghesi M 2016 Nat. Commun. 7 10792 [20] Dover N P, Cook N, Tresca O, Ettlinger O, Maharjan C, Polyanskiy M N, Shkolnikov P, Pogorelsky I and Najmudin Z 2016 J. Plasma Phys. 82 415820101 [21] Marqué J R, Loiseau P, Bonvalet J, Tarisien M, d'Humiéres E, Domange J, Hannachi F, Lancia L, Larroche O, Nicolaï P, Puyuelo-Valdes P, Romagnani L, Santos J J and Tikhonchuk V 2021 Phys. Plasmas 28 023103 [22] Puyuelo Valdes P, Henares J L, Hannachi F, Ceccotti T, D Domange J, Ehret M,d'Humieres E, Lancia L, Marqués J R, Ribeyre X, Santos J J, Tikhonchuk V and Tarisien M 2019 Phys. Plasmas 26 123109 [23] Deng Y, Zhang Q, Yue D, Wei W, Feng L, Cui Y, Ma Y, Lu F, Yang Y, Huang Z, Wu Y, Zhou W, Weng S, Liu F, Chen M, Yuan X and Zhang J 2022 Phys. Plasmas 29 123103 [24] Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P and Ting A 2016 Phys. Rev. Lett. 117 165001 [25] Zhang H, Shen B F, Wang W P, Zhai S H, Li S S, Lu X M, Li J F, Xu R J, Wang X L, Liang X Y, Leng Y X, Li R X and Xu Z Z 2017 Phys. Rev. Lett. 119 164801 [26] Longman A, Salgado C, Zeraouli G, Api naniz J I, Pérez-Hernández J A, Eltahlawy M K, Volpe L and Fedosejevs R 2020 Opt. Lett 45 2187 [27] Wang W P, Dong H, Shi Z Y, Leng Y X, Li R X and Xu Z Z 2022 Appl. Phys. Lett. 121 214102 [28] Wang W P, Shen B F, Zhang X M, Zhang L G, Shi Y and Xu Z Z 2015 Sci. Rep. 5 8274 [29] Kogelnik H W and Li T 1966 Appl. Opt. 5 1550 [30] Forbes A, Dudley A and Mclaren M 2016 Adv. Opt. Photon. 8 200 [31] Pae K H, Song H, Ryu C M, Chang H N and Kim C 2020 Plasma Phys. Control. Fusion 62 055009 [32] Torres J P and Torner L 2011 Twisted Photons: Applications of Light with Orbital Angular Momentum (Weinheim: WileyVCH), pp. 1-24 [33] Hu L X, Yu T P, Sheng Z M, Vieira J, Zou D B, Yin Y, McKenna P and Shao F Q 2018 Sci. Rep. 8 7282 [34] Gbur G J 2011 Mathematical Methods for Optical Physics and Engineering [35] Padgett M, Courtial J and Allen L 2004 Phys. Today 57 35 [36] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [37] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826 [38] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001 [39] Robinson A P L, Kwon D H and Lancaster K 2009 Plasma Phys. Control. Fusion 51 095006 [40] Weng S M, Murakami M, Mulser P and Sheng Z M 2012 New J. Phys. 14 063026 [41] Yoon J W, Jeon C, Shin J, Lee S K, Lee H W, Choi I W, Kim H T, Sung J H and Nam C H 2019 Opt. Express 27 20412 [42] Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|