Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 105202    DOI: 10.1088/1674-1056/ace428
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma

Jia-Xiang Gao(高嘉祥)1, Meng Liu(刘梦)2,†, and Wei-Min Wang(王伟民)1,3,4,‡
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micronano Devices, Renmin University of China, Beijing 100872, China;
2 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China;
3 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China;
4 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Laser-driven ion accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to generate ion beams with quasi-monoenergetic peak and low divergence in experiments with the current ultrahigh intensity laser and thin target technologies. Here we propose a scheme that a Laguerre-Gaussian laser irradiates a near-critical-density (NCD) plasma to generate a quasi-monoenergetic and low-divergence proton beam. The Laguerre-Gaussian laser pulse in an NCD plasma excites a moving longitudinal electrostatic field with a large amplitude, and it maintains the inward bowl-shape for dozens of laser durations. This special distribution of the longitudinal electrostatic field can simultaneously accelerate and converge the protons. Our particle-in-cell (PIC) simulation shows that the efficient proton acceleration can be realized with the Laguerre-Gaussian laser intensity ranging from $3.9\times {10}^{21}$ W$\cdot$cm$^{-2}$-$1.6\times 10^{22}$ W$\cdot$cm$^{-2}$ available in the near future, e.g., a quasi-monoenergetic proton beam with peak energy $\sim 115 $ MeV and divergence angles less than 5$^\circ$ can be generated by a $5.3\times 10^{21}$ W$\cdot $cm$^{-2}$ pulse. This work could provide a reference for the high-quality ion beam generation with PWclass laser systems available recently.
Keywords:  Laguerre-Gaussian laser      laser-driven ion acceleration      particle-in-cell simulations      near-critical-density plasma  
Received:  13 May 2023      Revised:  22 June 2023      Accepted manuscript online:  05 July 2023
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
  41.75.Jv (Laser-driven acceleration?)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25050300), the National Natural Science Foundation of China (Grant No. 12205366), the National Key Research and Development Program of China (Grant No. 2018YFA0404801), the Fundamental Research Funds for the Central Universities (Grant No. 2020MS138), and the Research Funds of Renmin University of China (Grant No. 20XNLG01).
Corresponding Authors:  Meng Liu, Wei-Min Wang     E-mail:  liumeng@ncepu.edu.cn;weiminwang1@ruc.edu.cn

Cite this article: 

Jia-Xiang Gao(高嘉祥), Meng Liu(刘梦), and Wei-Min Wang(王伟民) Efficient ion acceleration driven by a Laguerre-Gaussian laser in near-critical-density plasma 2023 Chin. Phys. B 32 105202

[1] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauern B, Roth M, Stöhlker T and Bagnoud V 2016 Phys. Rev. Lett. 116 205002
[2] Li A X, Qin C Y, Zhang H, Li S, Fan L L, Wang Q S, Xu T J, Wang N W, Yu L H, Xu Y, Liu Y Q, Wang C, Wang X L, Zhang Z X, Liu X Y, Bai P L, Gan Z B, Zhang X B, Wang X B, Fan C, Sun Y J, Tang Y H, Yao B, Liang X Y, Leng Y X, Shen B F, Ji L L, Li R X and Xu Z Z 2022 High Power Laser Sci. Eng. 10 e26
[3] Kim I J, Pae K H, Choi II W, Lee C L, Kim H T, Singhal H, Sung J H, Lee S K, Lee H W, Nickles P V, Jeong T M, Kim C M and Nam C H 2016 Phys. Plasmas 23 070701
[4] Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessus R, Armstrong C, Green J S, Hawkes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D and McKenna P 2018 Nat. Commun. 9 724
[5] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751
[6] Fuchs J, Antici P, D'Humiéres E, Lefebvre E, Borghesi M, Brambrink E, Cecchetti C A, Kaluza M, Malka V and Manclossi M 2005 Nat. Phys. 2 48
[7] Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V and Pegoraro F 2002 Phys. Lett. A 299 240
[8] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D and Powell H 2001 Phys. Rev. Lett. 86 436
[9] Kitagawa Y, Mori Y, Komeda O, et al. 2015 Phys. Rev. Lett. 114 195002
[10] Beg F N, Krushelnick K, Gower C, Torn S and Dangor A E 2002 Appl. Phys. Lett. 80 3009
[11] Wang W Q, Yin Y, Zou D B, Yu T P, Yang X H, Xu H, Yu M Y, Ma Y Y, Zhuo H B and Shao F Q 2014 Chin. Phys. Lett. 31 115201
[12] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, Mackinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D and Campbell E M 2000 Phys. Rev. Lett. 85 2945
[13] Borghesi M, Mackinnon A J, Campbell D H, Hicks D G, Kar S, Patel P K, Price D, Romagnani L, Schiavi A and Willi O 2004 Phys. Rev. Lett. 92 055003
[14] Zepf M, El C, Fn B, Rj C, Ae D, Gopal A, Krushelnick K, Pa N, Tatarakis M and Wagner U 2003 Phys. Rev. Lett. 90 064801
[15] Ban H Y, Gu Y J, Kon Q, L Y Y, Zhu Z and Kawata S 2012 Chin. Phys. Lett. 29 035202
[16] Cowan T E, Fuchs J, Ruhl H, et al. 2004 Phys. Rev. Lett. 92 204801
[17] Weng S M, Liu M, Sheng Z M, Murakami M, Chen M, Yu L L and Zhang J 2016 Sci. Rep. 6 22150
[18] Dromey B, Kar S, Bellei C, Carroll D C, Clarke R J, Green J S, Kneip S, Markey K, Nagel S R, Simpson P T, Willingale L, McKenna P, Neely D, Najmudin Z, Krushelnick K, Norreys P A and Zepf M 2007 Phys. Rev. Lett. 99 85001
[19] Kar S, Ahmed H, Prasad R, Cerchez M, Brauckmann S, Aurand B, Cantono G, Hadjisolomou P, Lewis C L S, Macchi A, Nersisyan G, Robinson A P L, Schroer A M, Swantusch M, Zepf M, Willi O and Borghesi M 2016 Nat. Commun. 7 10792
[20] Dover N P, Cook N, Tresca O, Ettlinger O, Maharjan C, Polyanskiy M N, Shkolnikov P, Pogorelsky I and Najmudin Z 2016 J. Plasma Phys. 82 415820101
[21] Marqué J R, Loiseau P, Bonvalet J, Tarisien M, d'Humiéres E, Domange J, Hannachi F, Lancia L, Larroche O, Nicolaï P, Puyuelo-Valdes P, Romagnani L, Santos J J and Tikhonchuk V 2021 Phys. Plasmas 28 023103
[22] Puyuelo Valdes P, Henares J L, Hannachi F, Ceccotti T, D Domange J, Ehret M,d'Humieres E, Lancia L, Marqués J R, Ribeyre X, Santos J J, Tikhonchuk V and Tarisien M 2019 Phys. Plasmas 26 123109
[23] Deng Y, Zhang Q, Yue D, Wei W, Feng L, Cui Y, Ma Y, Lu F, Yang Y, Huang Z, Wu Y, Zhou W, Weng S, Liu F, Chen M, Yuan X and Zhang J 2022 Phys. Plasmas 29 123103
[24] Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P and Ting A 2016 Phys. Rev. Lett. 117 165001
[25] Zhang H, Shen B F, Wang W P, Zhai S H, Li S S, Lu X M, Li J F, Xu R J, Wang X L, Liang X Y, Leng Y X, Li R X and Xu Z Z 2017 Phys. Rev. Lett. 119 164801
[26] Longman A, Salgado C, Zeraouli G, Api naniz J I, Pérez-Hernández J A, Eltahlawy M K, Volpe L and Fedosejevs R 2020 Opt. Lett 45 2187
[27] Wang W P, Dong H, Shi Z Y, Leng Y X, Li R X and Xu Z Z 2022 Appl. Phys. Lett. 121 214102
[28] Wang W P, Shen B F, Zhang X M, Zhang L G, Shi Y and Xu Z Z 2015 Sci. Rep. 5 8274
[29] Kogelnik H W and Li T 1966 Appl. Opt. 5 1550
[30] Forbes A, Dudley A and Mclaren M 2016 Adv. Opt. Photon. 8 200
[31] Pae K H, Song H, Ryu C M, Chang H N and Kim C 2020 Plasma Phys. Control. Fusion 62 055009
[32] Torres J P and Torner L 2011 Twisted Photons: Applications of Light with Orbital Angular Momentum (Weinheim: WileyVCH), pp. 1-24
[33] Hu L X, Yu T P, Sheng Z M, Vieira J, Zou D B, Yin Y, McKenna P and Shao F Q 2018 Sci. Rep. 8 7282
[34] Gbur G J 2011 Mathematical Methods for Optical Physics and Engineering
[35] Padgett M, Courtial J and Allen L 2004 Phys. Today 57 35
[36] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[37] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[38] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001
[39] Robinson A P L, Kwon D H and Lancaster K 2009 Plasma Phys. Control. Fusion 51 095006
[40] Weng S M, Murakami M, Mulser P and Sheng Z M 2012 New J. Phys. 14 063026
[41] Yoon J W, Jeon C, Shin J, Lee S K, Lee H W, Choi I W, Kim H T, Sung J H and Nam C H 2019 Opt. Express 27 20412
[42] Danson C N, Haefner C, Bromage J, et al. 2019 High Power Laser Sci. Eng. 7 e54
[1] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[2] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[3] Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉). Chin. Phys. B, 2021, 30(5): 055204.
[4] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[5] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
No Suggested Reading articles found!