Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110701    DOI: 10.1088/1674-1056/ad7af8
RAPID COMMUNICATION Prev   Next  

Gas encapsulation technology for large volume press

Minghao Du(杜明浩) and Duanwei He(贺端威)†
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  For samples in the gaseous state at room temperature and ambient pressure, mature technology has been developed to encapsulate them in a diamond anvil cell (DAC). However, the large volume press (LVP) can only treat samples with starting materials in solid or liquid form. We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time (over 10 min) under conditions of temperature higher than 1200 ℃ and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies. This technology can also be applied to the packaging of other gaseous or liquid samples, such as ammonia, sulfur dioxide, water, etc. in LVP devices.
Keywords:  large volume press      gas encapsulation      low-temperature  
Received:  13 May 2024      Revised:  31 July 2024      Accepted manuscript online:  14 September 2024
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
Corresponding Authors:  Duanwei He     E-mail:  duanweihe@scu.edu.cn

Cite this article: 

Minghao Du(杜明浩) and Duanwei He(贺端威) Gas encapsulation technology for large volume press 2024 Chin. Phys. B 33 110701

[1] Tian Y, Xu B, Yu D, et al. 2013 Nature 493 385
[2] Xu C, He D, Wang H, et al. 2013 S. Int. J. Refract. Met. H 36 232
[3] Guan S, Fang P, Hao L, et al. 2018 J. Appl. Phys. 124 215902
[4] Tetsuo I, Kurio A, Sakamoto S, et al. 2004 Phys. Earth. Planet. In. 143 593600
[5] Qin J, He D, Wang J, et al. 2008 AEnM 20 4780
[6] Wang S, Antonio D, Yu X, et al. 2015 Sci. Rep. 5 9
[7] Zhang J, He D, Fang L, et al. 2020 Rev. Sci. Instrum. 91 125103
[8] Liu G, Kou Z, Yan X, et al. 2015 Appl. Phys. Lett. 106 121901
[9] Druzhbin D and Myhill R 2016 Rev. Sci. Instrum. 87 024501
[10] Shang Y, Shen F, Hou X, et al. 2020 Chin. Phys. Lett. 37 80701
[11] Xi L, Chen J, Tang J, et al. 2012 High. Pressure. Res. 32 239
[12] Daniil K, Serovaiskii A, et al. 2017 J. Phys. Chem. A 121 6004
[13] Jayasooriya U A and Kettle S F A 1952 J. Phys. Chem. A 89 94447
[14] Alexander K, Innokenty K, Boffa-Ballaran, et al. 2008 Rev. Sci. Instrum. 4 045110
[15] Takemura K, Sahu P C, Yoshiyasu, et al. 2001 Rev. Sci. Instrum. 72 387376
[16] Bernard C, Nöel D, Hamel, et al. 2003 High. Pressure. Res. 23 40915
[17] Shin-ichi M, Hisako H, Hirotada G, et al. 2010 Rev. Sci. Instrum. 81 033901
[18] Klotz S, Chervin J C, Munsch P, et al. 2009 Appl. Phys. 42 075413
[19] Dewaele A and Loubeyre P 2007 High. Pressure. Res. 27 41929
[20] Varga T, Wilkinson A P and Angel R J 2003 Rev. Sci. Instrum. 74 456466
[21] Hikita T, Maruyama T and Yamada N 1990 Jpn. J. Appl. Phys. 29 251925
[22] Zhang J, Liu F, Wu J, et al. 2018 Rev. Sci. Instrum. 89 075106
[23] Zhang J, He D, Fang L, et al. 2020 Rev. Sci. Instrum. 91 125103
[24] Huang M, Peng F, Guan S, et al. 2021 Rev. Sci. Instrum. 92 073903
[25] Yan X, Ren X, He D, et al. 2016 Rev. Sci. Instrum. 87 125006
[26] Zeto R J and Vanfleet H B 1969 J. Appl. Phys. 40 222731
[27] Jing Q, Yan B, Qiang W, et al. 2007 Rev. Sci. Instrum. 78 073906
[28] Giordano Valentina M, Frédéric D and Agn`es D 2006 J. Chem. Phys. 8 125
[1] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[2] Effect of spin-reorientation transition of cell boundary phases on the temperature dependence of magnetization and coercivity in Sm2Co17 magnets
Si-Si Tu(涂思思), Lei Liu(刘雷), Bo Zhou(周波), Chuang-Hui Dong(董创辉), Li-Ming Ye(叶力铭), Ying-Li Sun(孙颖莉), Yong Ding(丁勇), A-Ru Yan(闫阿儒), and Xin-Biao Mao(毛信表). Chin. Phys. B, 2023, 32(12): 127501.
[3] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[4] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[5] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[6] Low-temperature growth of large-scale, single-crystalline graphene on Ir(111)
Hui Guo(郭辉), Hui Chen(陈辉), Yande Que(阙炎德), Qi Zheng(郑琦), Yu-Yang Zhang(张余洋), Li-Hong Bao(鲍丽宏), Li Huang(黄立), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056107.
[7] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[8] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[9] CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900℃ for multilayer piezoelectric actuator
Muhammad Adnan Qaiser, Ahmad Hussain, Yuqing Xu(徐玉青), Yaojin Wang(汪尧进), Yiping Wang(王一平), Ying Yang(杨颖), Guoliang Yuan(袁国亮). Chin. Phys. B, 2017, 26(3): 037702.
[10] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[11] A new family of sp3-hybridized carbon phases
Ning Xu(徐宁), Jian-Fu Li(李建福), Bo-Long Huang(黄勃龙), Bao-Lin Wang(王保林). Chin. Phys. B, 2016, 25(1): 016103.
[12] Low-temperature phase transformation from nanotube to sp3 superhard carbon phase
Xu Ning (徐宁), Li Jian-Fu (李建福), Huang Bo-Long (黄勃龙), Wang Bao-Lin (王保林). Chin. Phys. B, 2015, 24(6): 066102.
[13] Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation
Du Li-Jun (杜丽军), Song Hong-Fang (宋红芳), Li Hai-Xia (李海霞), Chen Shao-Long (陈邵龙), Chen Ting (陈婷), Sun Huan-Yao (孙焕尧), Huang Yao (黄垚), Tong Xin (童昕), Guan Hua (管桦), Gao Ke-Lin (高克林). Chin. Phys. B, 2015, 24(11): 113703.
[14] Dual-band LTCC antenna based on 0.95Zn2SiO4-0.05CaTiO3 ceramics for GPS/UMTS applications
Dou Gang (窦刚), Li Yu-Xia (李玉霞), Guo Mei (郭梅). Chin. Phys. B, 2015, 24(10): 108401.
[15] Effects of BaCu(B2O5) addition on sintering temperature and microwave dielectric properties of Ba5Nb4O15-BaWO4 ceramics
Jia Rui-Long (贾瑞龙), Su Hua (苏桦), Tang Xiao-Li (唐晓莉), Jing Yu-Lan (荆玉兰). Chin. Phys. B, 2014, 23(4): 047801.
No Suggested Reading articles found!