Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 113201    DOI: 10.1088/1674-1056/ad7579
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy

Yuan-Yuan Wu(吴圆圆)1, Yun-Hui He(何云辉)1, Yue-Chun Jiao(焦月春)1,2,†, and Jian-Ming Zhao(赵建明)1,2,‡
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We present the electromagnetically induced transparency (EIT) spectra of cold Rydberg four-level cascade atoms consisting of the $6{\rm S}_{1/2} \to 6{\rm P}_{3/2} \to 7{\rm S}_{1/2} \to 60{\rm P}_{3/2}$ scheme. A coupling laser drives the Rydberg transition, a dressing laser couples two intermediate levels and a weak probe laser probes the EIT signal. We numerically solve the Bloch equations and investigate the dependence of the probe transmission rate signal on the coupling and dressing lasers. We find that the probe transmission rate can display an EIT or electromagnetically induced absorption (EIA) profile, depending on the Rabi frequencies of the coupling and dressing lasers. When we increase the Rabi frequency of the coupling laser and keep the Rabi frequency of the probe and dressing laser fixed, flipping of the EIA to EIT spectrum occurs at the critical coupling Rabi frequency. When we apply a microwave field coupling the transition 60${\rm P}_{3/2} \to 61{\rm S}_{1/2}$, the EIT spectrum shows Autler-Townes splitting, which is employed to measure the microwave field. The theoretical measurement sensitivity can be 1.52$\times10^{-2}$ nV$\cdot$cm$^{-1}\cdot$Hz$^{-1/2}$ at the EIA-EIT flipping point.
Keywords:  Rydberg atoms      atomic microwave sensor      electromagnetically induced transparency and absorption  
Received:  02 July 2024      Revised:  28 August 2024      Accepted manuscript online:  30 August 2024
PACS:  32.80.Ee (Rydberg states)  
  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2341211, 62175136, 12241408, and 12120101004), the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0300902), the Fundamental Research Program of Shanxi Province (Grant No. 202303021224007), and the 1331 Project of Shanxi Province.
Corresponding Authors:  Yue-Chun Jiao, Jian-Ming Zhao     E-mail:  ycjiao@sxu.edu.cn;zhaojm@sxu.edu.cn

Cite this article: 

Yuan-Yuan Wu(吴圆圆), Yun-Hui He(何云辉), Yue-Chun Jiao(焦月春), and Jian-Ming Zhao(赵建明) Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy 2024 Chin. Phys. B 33 113201

[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
[2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[3] Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208
[4] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[5] Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M and Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184020
[6] Delone N B and Krainov V P 1999 Phys. Usp. 42 669
[7] Ma L, Viray M A, Anderson D A and Raithel G 2022 Phys. Rev. Appl. 18 024001
[8] Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L and Holloway C L 2016 Phys. Rev. Appl. 5 034003
[9] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[10] Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A and Adams C S 2010 Phys. Rev. Lett. 105 193603
[11] Chen S Y, Reed D J, MacKellar A R, Downes L A, Almuhawish N F A, Jamieson M J, Adams C S and Weatherill K J 2022 Optica 9 485
[12] Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photon. 11 40
[13] Fan H Q, Kümar S, Sedlacek J, Kubler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[14] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M and Jia S T 2016 Phys. Rev. A 94 023832
[15] Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S and Shi B S 2022 Phys. Rev. Appl. 18 014045
[16] Sedlacek J A, Schwettmann A, Kübler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[17] Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M and Jia S T 2017 Phys. Rev. Appl. 8 014028
[18] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Advances 9 045030
[19] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
[20] Liu Z K, Zhang L H, Liu B, Zhang Z Y, Guo G C, Ding D S and Shi B S 2022 Nat. Commun. 13 1997
[21] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 104 244102
[22] Fan H Q, Kümar S, Daschner R, Kubler H and Shaffer J P 2014 Opt. Lett. 39 3030
[23] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T and Jia S T 2020 Nat. Phys. 16 911
[24] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 Appl. Phys. Lett. 114 114101
[25] Prajapati N, Robinson A K, Berweger S, Simons M T, Artusio-Glimpse A B and Holloway C L 2021 Appl. Phys. Lett. 119 214001
[26] Gao Y C, Ren Y H, Yu D M and Qian J 2019 Phys. Rev. A 100 033823
[27] Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S and Weatherill K J 2012 Opt. Lett. 37 3858
[28] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E and Raithel G 2019 Phys. Rev. A 100 063427
[29] Prajapati N, Bhusal N, Rotunno A P, Berweger S, Simons M T, ArtusioGlimpse A B, Wang Y J, Bottomley E, Fan H Q and Holloway C L 2023 J. Appl. Phys. 134 023101
[30] Berman P R and Malinovsky V S 2011 Principles of Laser Spectroscopy and Quantum Optics (Princeton: Princeton University Press)
[31] Kondo J M, Šibalić N, Guttridge A, Wade C G, De Melo N R, Adams C S and Weatherill K J 2015 Opt. Lett. 40 5570
[32] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[33] Cai M H, You S H, Zhang S S, Xu Z S and Liu H P 2023 Appl. Phys. Lett. 122 161103
[1] Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms
Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东). Chin. Phys. B, 2024, 33(6): 064203.
[2] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[5] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[6] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[7] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[8] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2014, 23(10): 103201.
[9] Spectral decomposition at complex laser polarization configuration
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(5): 053201.
[10] The fractal structure in the ionization dynamics of Rydberg lithium atoms in a static electric field
Deng Shan-Hong(邓善红), Gao Song(高嵩), Li Yong-Ping(李永平), Xu Xue-You(徐学友), and Lin Sheng-Lu(林圣路). Chin. Phys. B, 2010, 19(4): 040511.
[11] Recombination during expansion of ultracold plasma
Zhao Jian-Ming(赵建明), Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2010, 19(4): 043202.
[12] Measurement of quantum defect of nS and nD states using field ionization spectroscopy in ultracold cesium atoms
Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li An-Ling(李安玲), Zhao Jian-Ming(赵建明), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2009, 18(5): 1838-1842.
No Suggested Reading articles found!