Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090311    DOI: 10.1088/1674-1056/ad711d
Special Issue: SPECIAL TOPIC — Quantum computing and quantum sensing
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator

Shun-Li Jiang(江顺利)1,2, Tian-Yi Jiang(蒋天翼)1,2, Yong-Qiang Xu(徐永强)1,2, Rui Wu(吴睿)1,2, Tian-Yue Hao(郝天岳)1,2, Shu-Kun Ye(叶澍坤)1,2, Ran-Ran Cai(蔡冉冉)1,2, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  Scaling up spin qubits in silicon-based quantum dots is one of the pivotal challenges in achieving large-scale semiconductor quantum computation. To satisfy the connectivity requirements and reduce the lithographic complexity, utilizing the qubit array structure and the circuit quantum electrodynamics (cQED) architecture together is expected to be a feasible scaling scheme. A triple-quantum dot (TQD) coupled with a superconducting resonator is regarded as a basic cell to demonstrate this extension scheme. In this article, we investigate a system consisting of a silicon TQD and a high-impedance TiN coplanar waveguide (CPW) resonator. The TQD can couple to the resonator via the right double-quantum dot (RDQD), which reaches the strong coupling regime with a charge-photon coupling strength of ${g_0}/({2\pi})=175$ ${\rm MHz}$. Moreover, we illustrate the high tunability of the TQD through the characterization of stability diagrams, quadruple points (QPs), and the quantum cellular automata (QCA) process. Our results contribute to fostering the exploration of silicon-based qubit integration.
Keywords:  triple-quantum dot      strong coupling      circuit quantum electrodynamics (cQED)      scalable silicon-based cQED architectures  
Received:  16 June 2024      Revised:  16 August 2024      Accepted manuscript online:  20 August 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92265113, 12074368, 12304560, and 12034018) and China Postdoctoral Science Foundation (Grant Nos. BX20220281 and 2023M733408).
Corresponding Authors:  Gang Cao     E-mail:  gcao@ustc.edu.cn

Cite this article: 

Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator 2024 Chin. Phys. B 33 090311

[1] Simmons C B, Prance J R, Bael B J V, Koh T S, Shi Z, Savage D E, Lagally M G, Joynt R, Friesen M, Coppersmith S N and Eriksson M A 2011 Phys. Rev. Lett. 106 156804
[2] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
[3] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102
[4] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M K 2022 Nature 601 343
[5] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 eabn5130
[6] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338
[7] Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A, Reilly D J, Schreiber L R and Veldhorst M 2017 npj Quantum Inf. 3 34
[8] Gonzalez-Zalba M F, de Franceschi S, Charbon E, Meunier T, Vinet M and Dzurak A S 2021 Nat. Electron. 4 872
[9] Philips S G J, Madzik M T, Amitonov S V, de Snoo S L, Russ M, Kalhor N, Volk C, Lawrie W I L, Brousse D, Tryputen L, Wuetz B P, Sammak A, Veldhorst M, Scappucci G and Vandersypen L M K 2022 Nature 609 919
[10] Lin T, Li H O, Cao G and Guo G P 2023 Chin. Phys. B 32 070307
[11] Xue R, Beer M, Seidler I, Humpohl S, Tu J S, Trellenkamp S, Struck T, Bluhm H and Schreiber L R 2024 Nat. Commun. 15 2296
[12] Srinivasa V, Taylor J M and Tahan C 2016 Phys. Rev. B 94 205421
[13] Nicolí G, Ferguson M S, Rössler C, Wolfertz A, Blatter G, Ihn T, Ensslin K, Reichl C, Wegscheider W and Zilberberg O 2018 Phys. Rev. Lett. 120 236801
[14] Van Woerkom D, Scarlino P, Ungerer J, Müller C, Koski J, Landig A, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2018 Phys. Rev. X 8 041018
[15] Warren A, Barnes E and Economou S E 2019 Phys. Rev. B 100 161303
[16] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature 577 195
[17] Wang B C, Lin T, Li H O, Gu S S, Chen M B, Guo G C, Jiang H W, Hu X D, Cao G and Guo G P 2021 Sci. Bull. 66 332
[18] Young S M, Jacobson N T and Petta J R 2022 Phys. Rev. Appl. 18 064082
[19] Harvey-Collard P, Dijkema J, Zheng G, Sammak A, Scappucci G and Vandersypen L M K 2022 Phys. Rev. X 12 021026
[20] Xu Y Q, Gu S S, Lin T, Wang B C, Li H O, Cao G and Guo G P 2023 Sci. China-Phys. Mech. Astron. 66 237301
[21] Pan X, Song P and Y Gao Y 2023 Chin. Phys. Lett. 40 110303
[22] Zhao C, He Y, Geng X, He K, Dai G, Liu J and Chen W 2022 Chin. Phys. Lett. 40 010301
[23] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030
[24] Scarlino P, van Woerkom D J, Mendes U C, Koski J V, Landig A J, Andersen C K, Gasparinetti S, Reichl C, Wegscheider W, Ensslin K, Ihn T, Blais A and Wallraff A 2019 Nat. Commun. 10 3011
[25] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D P, DiCarlo L and Vandersypen L M K 2016 Phys. Rev. Appl. 5 044004
[26] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
[27] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
[28] Benito M, Croot X, Adelsberger C, Putz S, Mi X, Petta J R and Burkard G 2019 Phys. Rev. B 100 125430
[29] Croot X, Mi X, Putz S, Benito M, Borjans F, Burkard G and Petta J R 2020 Phys. Rev. Research 2 012006
[30] Mutter P M and Burkard G 2021 Phys. Rev. Research 3 013194
[31] Yu C X, Zihlmann S, Abadillo-Uriel J C, Michal V P, Rambal N, Niebojewski H, Bedecarrats T, Vinet M, Dumur É, Filippone M, Bertrand B, De Franceschi S, Niquet Y M and Maurand R 2023 Nat. Nanotechnol. 18 741
[32] Dijkema J, Xue X, Harvey-Collard P, Rimbach-Russ M, de Snoo S L, Zheng G, Sammak A, Scappucci G and Vandersypen L M K 2023 arXiv: 2310.16805v1[quant-ph]
[33] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[34] Das Sarma S, Wang X and Yang S 2011 Phys. Rev. B 83 235314
[35] Benito M, Mi X, Taylor J M, Petta J R and Burkard G 2017 Phys. Rev. B 96 235434
[36] Amin K R, Ladner C, Jourdan G, Hentz S, Roch N and Renard J 2022 Appl. Phys. Lett. 120 164001
[37] Kroner M, Govorov A O, Remi S, Biedermann B, Seidl S, Badolato A, Petroff P M, Zhang W, Barbour R, Gerardot B D, Warburton R J and Karrai K 2008 Nature 451 311
[38] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[39] Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156
[40] Bfttcher C G L, Harvey S P, Fallahi S, Gardner G C, Manfra M J, Vool U, Bartlett S D and Yacoby A 2022 Nat. Commun. 13 4773
[41] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[42] Li R, Petit L, Franke D P, Dehollain J P, Helsen J, Steudtner M, Thomas N K, Yoscovits Z R, Singh K J, Wehner S, Vandersypen L M K, Clarke J S and Veldhorst M 2018 Sci. Adv. 4 eaar3960
[43] Weijie L, Zhihai L, Jingwei M, Yi L, Dong P, Jianhua Z and Q X H 2023 Adv. Quantum Technol. 6 2200158
[44] Rogge M C and Haug R J 2009 New J. Phys. 11 113037
[45] Amlani I I, Orlov A O, Toth G, Bernstein G H, Lent C S and Snider G L 1999 Science 284 289
[46] Russ M, Peterfalvi C G and Burkard G 2020 J. Phys.: Condens. Matter 32 165301
[47] Mills A, Zajac D, Gullans M and Schupp F 2019 Nat. Commun. 10 1063
[1] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[2] Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2021, 30(11): 118702.
[3] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[4] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[5] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[6] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[7] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[8] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[9] Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator
Kun Dong(董锟). Chin. Phys. B, 2016, 25(12): 124202.
[10] Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator
Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花). Chin. Phys. B, 2014, 23(9): 094204.
[11] Multiple ionization of atoms and molecules impacted by very high-q fast projectiles in the strong coupling regime (q/v >1)
Zhou Man (周满), Zou Xian-Rong (邹贤容), Zhao Lei (赵磊), Chen Xi-Meng (陈熙萌), Wang Shi-Yao (王诗尧), Zhou Wang (周旺), Shao Jian-Xiong (邵剑雄). Chin. Phys. B, 2013, 22(10): 103402.
[12] Demonstration of the approximation of eliminating atomic excited populations in an atom–cavity system
Zhang Yu-Qing(张玉青), Huang Gang(黄刚), and Tan Lei(谭磊) . Chin. Phys. B, 2012, 21(2): 023701.
[13] Dynamical properties of two-band superlattices with strong interband coupling in real space under the action of ac and dc-ac fields
Duan Su-Qing (段素青), Wang Zhi-Gang (王志刚), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2003, 12(8): 899-904.
No Suggested Reading articles found!