Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 073701    DOI: 10.1088/1674-1056/ad401c
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Atomic transport dynamics in crossed optical dipole trap

Peng Peng(彭鹏)1, Zhengxi Zhang(张正熙)1, Yaoyuan Fan(樊耀塬)1, Guoling Yin(殷国玲)3, Dekai Mao(毛德凯)1, Xuzong Chen(陈徐宗)1, Wei Xiong(熊炜)1, and Xiaoji Zhou(周小计)1,2,3,†
1 State Key Laboratory of Advanced Optical Communication System and Network, School of Electronics, Peking University, Beijing 100871, China;
2 Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan 030012, China;
3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss. The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.
Keywords:  cold atom      crossed optical dipole trap      transport process  
Received:  06 March 2024      Revised:  03 April 2024      Accepted manuscript online:  18 April 2024
PACS:  37.10.De (Atom cooling methods)  
  05.60.-k (Transport processes)  
  37.10.Gh (Atom traps and guides)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92365208, 11934002, and 11920101004), the National Key Research and Development Program of China (Grant Nos. 2021YFA0718300 and 2021YFA1400900), the Science and Technology Major Project of Shanxi (Grant No. 202101030201022), and the Space Application System of China Manned Space Program.
Corresponding Authors:  Xiaoji Zhou     E-mail:  xjzhou@pku.edu.cn

Cite this article: 

Peng Peng(彭鹏), Zhengxi Zhang(张正熙), Yaoyuan Fan(樊耀塬), Guoling Yin(殷国玲), Dekai Mao(毛德凯), Xuzong Chen(陈徐宗), Wei Xiong(熊炜), and Xiaoji Zhou(周小计) Atomic transport dynamics in crossed optical dipole trap 2024 Chin. Phys. B 33 073701

[1] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys 83 407
[2] Argonov V Y and Prants S V 2007 Phys. Rev. A 75 063428
[3] Roth A, Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L and Zhang S C 2009 Science 325 294
[4] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[5] Sturm S, Wagner A, Schabinger B, Zatorski J, Harman Z, Quint W, Werth G, Keitel C K and Blaum K 2011 Phys. Rev. Lett. 107 023002
[6] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[7] Yu Z C, Tian J Y, Peng P, Mao D K, Chen X Z and Zhou X J 2023 Phys. Rev. A 107 023303
[8] Bakhtiari M, Vignolo P and Tosi M 2006 Physica E 33 223
[9] Lewandowski H J, Harber D M, Whitaker D L and Cornell E A 2002 Opt. Commun. 358 82
[10] Greiner M, Bloch I, Hansch T W and Esslinger T 2001 Phys. Rev. A 63 031401
[11] Lewandowski H J, Harber D M, Whitaker D L, and Cornell E A 2003 J. Low Temp. Phys. 132 309
[12] Lee J H, Jung H, Choi J Y and Mun J 2020 Phys. Rev. A 102 063106
[13] Gross C and Gan H C J and Dieckmann K 2016 Phys. Rev. A 93 053424
[14] Schmid S, Thalhammer G, Winkler K, Lang F and Denschlag J H 2006 New J. Phys. 8 159
[15] Pertot D, Greif D, Albert S, Gadway B and Schneble D 2009 J Phys. B: At. Mol. Opt. Phys. 42 215305
[16] Kuppens S J M, Corwin K L, Miller K W, Chupp T E and Wieman C E 2000 Phys. Rev. A 62 013406
[17] Davis K B, Mewes M O and Ketterle W 1995 Appl. Phys. B 60 155
[18] Huh S, Kim K, Kwon K and Choi J J 2020 Phys. Rev. Res. 2 033471
[19] Borgh M O, Lovegrove J and Ruostekoski J 2017 Phys. Rev. A 95 053601
[20] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[21] Tang P J, Peng P, Li Z H, Chen X Z, Li X P and Zhou X J 2019 Phys. Rev. A 100 013618
[22] Guo X X, Yu Z C, Wei F s, Jin S J, Chen X Z, Li X P, Zhang X B and Zhou X J 2022 Sci. Bull. 67 2291
[23] Horikoshi M and Nakagawa K 2006 Phys. Rev. A 74 031602
[24] Debs J E, Altin P A, Barter T H, Doring D, Dennis G R, McDonald G, Anderson R P, Close J D and Robins N P 2011 Phys. Rev. A 84 033610
[25] Muntinga H, Ahlers H and Krutzik M 2013 Phys. Rev. Lett. 110 093602
[26] Dong X Y, Jing S J, Shui H M, Peng P and Zhou X J 2021 Chin. Phys. B 30 014210
[27] Li L, Xiong W, Wang B, et al. 2023 IEEE Photon. J. 15 7100508
[28] Li L, Zhou C Y, Xiong W, et al. 2023 Appl. Opt. 62 7844
[29] Bismut G, Pasquiou B, Ciampini D, Laburthe-Tolra B, Marchal E, Vernac L and Gorceix O 2013 Appl. Phys. B 102 1
[30] Shibata K, Yonekawa S and Tojo S 2017 Phys. Rev. A 96 013402
[31] Schlosser N, Reymond G and Grangier P 2013 Phys. Rev. Lett. 89 023005
[32] Barker D S, Fedchak J A, Klos J, Scherschligt J, Sheikh A A, Tiesinga E and Eckel S P 2023 AVS Quantum Sci. 5 035001
[33] Mies F H, Williams C J, Julienne P S and Krauss M 1996 J. Res. Natl. Inst. Standards Technol. 101 521
[34] Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. A 47 R4567
[35] Wang Z B, Gu C, Hu X X, Zhang Y T, Zhang J Z, Li G, He X D, Zou X B, Dong C H, Guo J C and Zou C L 2023 Opt. Lett. 48 1064
[1] Efficient loading of cesium atoms in a magnetic levitated dimple trap
Guoqing Zhang(张国庆), Guosheng Feng(冯国胜), Yuqing Li(李玉清), Jizhou Wu(武寄洲), and Jie Ma(马杰). Chin. Phys. B, 2024, 33(2): 023702.
[2] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[3] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[4] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[5] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[6] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[7] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[8] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[9] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[10] Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock
Xi Zhang(张茜), Fei Yang(杨飞), Zi-Tong Feng(冯子桐), Jie-Jun Zhao(赵洁珺), Fang Wei(魏芳), Hai-Wen Cai(蔡海文), Rong-Hui Qu(瞿荣辉). Chin. Phys. B, 2019, 28(7): 074209.
[11] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
[12] Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM
Qiyu Wang(王启宇), Jinyang Feng(冯金扬), Shaokai Wang(王少凯), Wei Zhuang(庄伟), Yang Zhao(赵阳), Lishuang Mou(牟丽爽), Shuqing Wu(吴书清). Chin. Phys. B, 2018, 27(12): 123701.
[13] Matter wave interference of dilute Bose gases in the critical regime
Xuguang Yue(乐旭广), Shujuan Liu(刘淑娟), Biao Wu(吴飙), Hongwei Xiong(熊宏伟). Chin. Phys. B, 2017, 26(5): 050501.
[14] Electric-field-modified Feshbach resonances in ultracold atom-molecule collision
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英). Chin. Phys. B, 2017, 26(1): 013402.
[15] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
No Suggested Reading articles found!