|
|
Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap |
Peibo Ding(丁培波)1, Biao Shan(单标)1, Yuhang Zhao(赵宇航)1, Yajing Yang(杨雅婧)1, Liangchao Chen(陈良超)1,2, Zengming Meng(孟增明)1,2, Pengjun Wang(王鹏军)1,2, and Lianghui Huang(黄良辉)1,2,† |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 2 Hefei National Laboratory, Hefei 230000, China |
|
|
Abstract We report on the optimal production of the Bose and Fermi mixtures with $^{87}$Rb and $^{40}$K in a crossed optical dipole trap (ODT). We measure the atomic number and lifetime of the mixtures in combination of the spin state $|F=9/2, m_{\scriptscriptstyle{\rm F}}=9/2\rangle$ of $^{40}$K and $|1, 1\rangle$ of $^{87}$Rb in the ODT, which is larger and longer compared with the combination of the spin state $|9/2, 9/2\rangle$ of $^{40}$K and $|2, 2\rangle$ of $^{87}$Rb in the ODT. We observe the atomic numbers of $^{87}$Rb and $^{40}$K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap. By optimizing the relative loading time of atomic mixtures in the MOT, we obtain the large atomic number of $^{40}$K ($\sim6\times10^{6}$) or the mixtures of atoms with an equal number ($\sim1.6\times10^{6}$) at the end of evaporative cooling in the ODT. We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms ($8\times10^{6}$) and higher degeneracy ($T/T_{\scriptscriptstyle{\rm F}}=0.25$) of Fermi gases are obtained. The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model, as well as for creating ground-state molecules of $^{87}$Rb$^{40}$K.
|
Received: 03 February 2024
Revised: 26 February 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
67.85.Pq
|
(Mixtures of Bose and Fermi gases)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
34.50.Cx
|
(Elastic; ultracold collisions)
|
|
Fund: This research was supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003), the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245, 12322409, 92065108, 11974224, and 12022406), the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700), and the Fund for Shanxi 1331 Project Key Subjects Construction. |
Corresponding Authors:
Lianghui Huang
E-mail: huanglh06@sxu.edu.cn
|
Cite this article:
Peibo Ding(丁培波), Biao Shan(单标), Yuhang Zhao(赵宇航), Yajing Yang(杨雅婧), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), and Lianghui Huang(黄良辉) Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap 2024 Chin. Phys. B 33 063402
|
[1] Ni K K, Ospelkaus S, Jin D S and Ye J 2008 Science 322 231 [2] Voigt A C, Taglieber M and Dieckmann K 2009 Phys. Rev. Lett. 102 020405 [3] Takekoshi T, Le Sueur C R and Grimm R 2014 Phys. Rev. Lett. 113 205301 [4] Ferrier-Barbut I, Delehaye M and Salomon C 2014 Science 345 1035 [5] Roy R, Green A, Bowler R and Gupta S 2017 Phys. Rev. Lett. 118 055301 [6] Cetina M, Jag M, Lous R S, Walraven J T M, Grimm R, Christensen R S and Bruun G M 2015 Phys. Rev. Lett. 115 135302 [7] Hu M G, Van de Graaff M J, Kedar D, Corson J P, Cornell E A and Jin D S 2016 Phys. Rev. Lett.117 055301 [8] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602 [9] Petrov D S 2015 Phys. Rev. Lett. 115 155302 [10] Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P and Tarruell L 2018 Science 359 301 [11] Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M and Fattori M 2018 Phys. Rev. Lett. 120 235301 [12] Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L and Tarruell L 2018 Phys. Rev. Lett. 120 135301 [13] Naidon P and Endo S 2017 Rep. Prog. Phys. 80 056001 [14] Greene C H, Giannakeas P and Pérez-Ríos J 2017 Rev. Mod. Phys. 89 035006 [15] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586 [16] Maddaloni P, Modugno M, Fort C, Minardi F and Inguscio M 2000 Phys. Rev. Lett. 85 2413 [17] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett. 87 080403 [18] Fukuhara T, Sugawa S, Takasu Y and Takahashi Y 2009 Phys. Rev. A 79 021601 [19] Ospelkaus C, Ospelkaus S, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 96 020401 [20] Best T, Will S, Schneider U, Hackermüller L, van Oosten D, Bloch I and Lühmann D S 2009 Phys. Rev. Lett. 102 030408 [21] McCarron D J, Cho H W, Jenkin D L, Koppinger M P and Cornish S L 2011 Phys. Rev. A 84 011603 [22] Park J W, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A 85 051602 [23] Wang F, Li X, Xiong D and Wang D 2016 J. Phys. B: At. Mol. Opt. Phys. 49 015302 [24] Warner C, Lam A Z, Bigagli N, Liu H C, Stevenson I and Will S 2021 Phys. Rev. A 104 033302 [25] Li Z, Gu Z, Shi Z, Wang P and Zhang J 2023 Chin. Phys. B 32 023701 [26] Chen Y D, Li W X, Sun Y T, Chen Q C, Chang P Y and Tung S 2023 Phys. Rev. A 108 033301 [27] Taglieber M, Voigt A C, Aoki T, Hänsch T W and Dieckmann K 2008 Phys. Rev. Lett. 100 010401 [28] Salasnich L and Toigo F 2007 Phys. Rev. A 75 013623 [29] Truscott A G, Strecker K E, McAlexander W I, Partridge G B and Hulet R G 2001 Science 291 2570 [30] Roati G, Riboli F, Modugno G and Inguscio M 2002 Phys. Rev. Lett. 89 150403 [31] Hadzibabic Z, Stan C A, Dieckmann K, Gupta S, Zwierlein M W, Gorlitz A and Ketterle W 2002 Phys. Rev. Lett. 88 160401 [32] Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A 82 011608 [33] Wu C H, Santiago I, Park J W, Ahmadi P and Zwierlein M W 2011 Phys. Rev. A 84 011601 [34] Yao X C, Chen H Z, Wu Y P, Liu X P, Wang X Q, Jiang X, Deng Y, Chen Y A and Pan J W 2016 Phys. Rev. Lett. 117 145301 [35] DeSalvo B J, Patel K, Johansen J and Chin C 2017 Phys. Rev. Lett. 119 233401 [36] Schafer F, Konishi H, Bouscal A, Yagami T and Takahashi Y 2017 Phys. Rev. A 96 032711 [37] Ye Z X, Xie L Y, Guo Z, Ma X B, Wang G R, You L and Tey M K 2020 Phys. Rev. A 102 033307 [38] Wang P J, Fu Z K, Chai S J and Zhang J 2011 Chin. Phys. B 20 103401 [39] Huang L, Wang P, Fu Z and Zhang J 2014 Chin. Phys. B 23 013402 [40] Schönmeier-Kromer J and Pollet L 2023 Phys. Rev. B 107 054502 [41] Parajuli B, Pecak D and Chien C C 2023 Phys. Rev. A 107 023308 [42] Inouye S, Goldwin J, Olsen M L, Ticknor C, Bohn J L and Jin D S 2004 Phys. Rev. Lett. 93 183201 [43] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 Science 363 853 [44] Miao J, Bian G, Shan B, Chen L, Meng Z, Wang P, Huang L and Zhang J 2022 Chin. Phys. B 31 080306 [45] Chai S, Wang P J, Fu Z, Huang L and Zhang J 2012 Acta Sin. Quantum Opt. 18 171 (in Chinese) [46] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540 [47] Goldwin J, Papp S B, DeMarco B and Jin D S 2002 Phys. Rev. A 65 021402 [48] Rio Fernandes D, Sievers F, Kretzschmar N, Wu S, Salomon C and Chevy F 2012 Europhys. Lett. 100 63001 [49] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [50] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302 [51] Hensler S, Werner J, Griesmaier A, Giovanazzi S and Rzazewski K 2003 Appl. Phys. B 77 765 [52] Krauser J S, Heinze J, Gotze S, Langbecker M, Fläschner N, Cook L, Hanna T M, Tiesinga E, Sengstock K and Becker C 2017 Phys. Rev. A 95 042701 [53] Mi C D, Nawaz K S, Wang P J, Chen L C, Meng Z M, Huang L and Zhang J 2021 Chin. Phys. B 30 063401 [54] Nie L, Mi C D, Zhang Y, Chen L C and Zhang J 2022 Acta Sin. Quantum Opt. 28 215 (in Chinese) [55] Wang X Q, Wang Y X, Liu X P, Pan J W, Yao X C, Chen Y A and Pan J W 2020 Phys. Rev. A 101 041601 [56] Simoni A, Ferlaino F, Roati G, Modugno G and Inguscio M 2003 Phys. Rev. Lett. 90 163202 [57] Bian G, Shan B, Huang L and Zhang J 2003 Chin. Opt. Lett. 21 100201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|