Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 063402    DOI: 10.1088/1674-1056/ad334d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap

Peibo Ding(丁培波)1, Biao Shan(单标)1, Yuhang Zhao(赵宇航)1, Yajing Yang(杨雅婧)1, Liangchao Chen(陈良超)1,2, Zengming Meng(孟增明)1,2, Pengjun Wang(王鹏军)1,2, and Lianghui Huang(黄良辉)1,2,†
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
2 Hefei National Laboratory, Hefei 230000, China
Abstract  We report on the optimal production of the Bose and Fermi mixtures with $^{87}$Rb and $^{40}$K in a crossed optical dipole trap (ODT). We measure the atomic number and lifetime of the mixtures in combination of the spin state $|F=9/2, m_{\scriptscriptstyle{\rm F}}=9/2\rangle$ of $^{40}$K and $|1, 1\rangle$ of $^{87}$Rb in the ODT, which is larger and longer compared with the combination of the spin state $|9/2, 9/2\rangle$ of $^{40}$K and $|2, 2\rangle$ of $^{87}$Rb in the ODT. We observe the atomic numbers of $^{87}$Rb and $^{40}$K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap. By optimizing the relative loading time of atomic mixtures in the MOT, we obtain the large atomic number of $^{40}$K ($\sim6\times10^{6}$) or the mixtures of atoms with an equal number ($\sim1.6\times10^{6}$) at the end of evaporative cooling in the ODT. We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms ($8\times10^{6}$) and higher degeneracy ($T/T_{\scriptscriptstyle{\rm F}}=0.25$) of Fermi gases are obtained. The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model, as well as for creating ground-state molecules of $^{87}$Rb$^{40}$K.
Keywords:  optical dipole trap      Bose and Fermi gas mixtures      atomic lifetime  
Received:  03 February 2024      Revised:  26 February 2024      Accepted manuscript online:  13 March 2024
PACS:  67.85.Pq (Mixtures of Bose and Fermi gases)  
  37.10.Jk (Atoms in optical lattices)  
  03.75.Ss (Degenerate Fermi gases)  
  34.50.Cx (Elastic; ultracold collisions)  
Fund: This research was supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003), the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245, 12322409, 92065108, 11974224, and 12022406), the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700), and the Fund for Shanxi 1331 Project Key Subjects Construction.
Corresponding Authors:  Lianghui Huang     E-mail:  huanglh06@sxu.edu.cn

Cite this article: 

Peibo Ding(丁培波), Biao Shan(单标), Yuhang Zhao(赵宇航), Yajing Yang(杨雅婧), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), and Lianghui Huang(黄良辉) Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap 2024 Chin. Phys. B 33 063402

[1] Ni K K, Ospelkaus S, Jin D S and Ye J 2008 Science 322 231
[2] Voigt A C, Taglieber M and Dieckmann K 2009 Phys. Rev. Lett. 102 020405
[3] Takekoshi T, Le Sueur C R and Grimm R 2014 Phys. Rev. Lett. 113 205301
[4] Ferrier-Barbut I, Delehaye M and Salomon C 2014 Science 345 1035
[5] Roy R, Green A, Bowler R and Gupta S 2017 Phys. Rev. Lett. 118 055301
[6] Cetina M, Jag M, Lous R S, Walraven J T M, Grimm R, Christensen R S and Bruun G M 2015 Phys. Rev. Lett. 115 135302
[7] Hu M G, Van de Graaff M J, Kedar D, Corson J P, Cornell E A and Jin D S 2016 Phys. Rev. Lett.117 055301
[8] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602
[9] Petrov D S 2015 Phys. Rev. Lett. 115 155302
[10] Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P and Tarruell L 2018 Science 359 301
[11] Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M and Fattori M 2018 Phys. Rev. Lett. 120 235301
[12] Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L and Tarruell L 2018 Phys. Rev. Lett. 120 135301
[13] Naidon P and Endo S 2017 Rep. Prog. Phys. 80 056001
[14] Greene C H, Giannakeas P and Pérez-Ríos J 2017 Rev. Mod. Phys. 89 035006
[15] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[16] Maddaloni P, Modugno M, Fort C, Minardi F and Inguscio M 2000 Phys. Rev. Lett. 85 2413
[17] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J and Salomon C 2001 Phys. Rev. Lett. 87 080403
[18] Fukuhara T, Sugawa S, Takasu Y and Takahashi Y 2009 Phys. Rev. A 79 021601
[19] Ospelkaus C, Ospelkaus S, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 96 020401
[20] Best T, Will S, Schneider U, Hackermüller L, van Oosten D, Bloch I and Lühmann D S 2009 Phys. Rev. Lett. 102 030408
[21] McCarron D J, Cho H W, Jenkin D L, Koppinger M P and Cornish S L 2011 Phys. Rev. A 84 011603
[22] Park J W, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A 85 051602
[23] Wang F, Li X, Xiong D and Wang D 2016 J. Phys. B: At. Mol. Opt. Phys. 49 015302
[24] Warner C, Lam A Z, Bigagli N, Liu H C, Stevenson I and Will S 2021 Phys. Rev. A 104 033302
[25] Li Z, Gu Z, Shi Z, Wang P and Zhang J 2023 Chin. Phys. B 32 023701
[26] Chen Y D, Li W X, Sun Y T, Chen Q C, Chang P Y and Tung S 2023 Phys. Rev. A 108 033301
[27] Taglieber M, Voigt A C, Aoki T, Hänsch T W and Dieckmann K 2008 Phys. Rev. Lett. 100 010401
[28] Salasnich L and Toigo F 2007 Phys. Rev. A 75 013623
[29] Truscott A G, Strecker K E, McAlexander W I, Partridge G B and Hulet R G 2001 Science 291 2570
[30] Roati G, Riboli F, Modugno G and Inguscio M 2002 Phys. Rev. Lett. 89 150403
[31] Hadzibabic Z, Stan C A, Dieckmann K, Gupta S, Zwierlein M W, Gorlitz A and Ketterle W 2002 Phys. Rev. Lett. 88 160401
[32] Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A 82 011608
[33] Wu C H, Santiago I, Park J W, Ahmadi P and Zwierlein M W 2011 Phys. Rev. A 84 011601
[34] Yao X C, Chen H Z, Wu Y P, Liu X P, Wang X Q, Jiang X, Deng Y, Chen Y A and Pan J W 2016 Phys. Rev. Lett. 117 145301
[35] DeSalvo B J, Patel K, Johansen J and Chin C 2017 Phys. Rev. Lett. 119 233401
[36] Schafer F, Konishi H, Bouscal A, Yagami T and Takahashi Y 2017 Phys. Rev. A 96 032711
[37] Ye Z X, Xie L Y, Guo Z, Ma X B, Wang G R, You L and Tey M K 2020 Phys. Rev. A 102 033307
[38] Wang P J, Fu Z K, Chai S J and Zhang J 2011 Chin. Phys. B 20 103401
[39] Huang L, Wang P, Fu Z and Zhang J 2014 Chin. Phys. B 23 013402
[40] Schönmeier-Kromer J and Pollet L 2023 Phys. Rev. B 107 054502
[41] Parajuli B, Pecak D and Chien C C 2023 Phys. Rev. A 107 023308
[42] Inouye S, Goldwin J, Olsen M L, Ticknor C, Bohn J L and Jin D S 2004 Phys. Rev. Lett. 93 183201
[43] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 Science 363 853
[44] Miao J, Bian G, Shan B, Chen L, Meng Z, Wang P, Huang L and Zhang J 2022 Chin. Phys. B 31 080306
[45] Chai S, Wang P J, Fu Z, Huang L and Zhang J 2012 Acta Sin. Quantum Opt. 18 171 (in Chinese)
[46] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[47] Goldwin J, Papp S B, DeMarco B and Jin D S 2002 Phys. Rev. A 65 021402
[48] Rio Fernandes D, Sievers F, Kretzschmar N, Wu S, Salomon C and Chevy F 2012 Europhys. Lett. 100 63001
[49] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[50] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[51] Hensler S, Werner J, Griesmaier A, Giovanazzi S and Rzazewski K 2003 Appl. Phys. B 77 765
[52] Krauser J S, Heinze J, Gotze S, Langbecker M, Fläschner N, Cook L, Hanna T M, Tiesinga E, Sengstock K and Becker C 2017 Phys. Rev. A 95 042701
[53] Mi C D, Nawaz K S, Wang P J, Chen L C, Meng Z M, Huang L and Zhang J 2021 Chin. Phys. B 30 063401
[54] Nie L, Mi C D, Zhang Y, Chen L C and Zhang J 2022 Acta Sin. Quantum Opt. 28 215 (in Chinese)
[55] Wang X Q, Wang Y X, Liu X P, Pan J W, Yao X C, Chen Y A and Pan J W 2020 Phys. Rev. A 101 041601
[56] Simoni A, Ferlaino F, Roati G, Modugno G and Inguscio M 2003 Phys. Rev. Lett. 90 163202
[57] Bian G, Shan B, Huang L and Zhang J 2003 Chin. Opt. Lett. 21 100201
[1] Atomic transport dynamics in crossed optical dipole trap
Peng Peng(彭鹏), Zhengxi Zhang(张正熙), Yaoyuan Fan(樊耀塬), Guoling Yin(殷国玲), Dekai Mao(毛德凯), Xuzong Chen(陈徐宗), Wei Xiong(熊炜), and Xiaoji Zhou(周小计). Chin. Phys. B, 2024, 33(7): 073701.
[2] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[3] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[4] Excessive levitation for the efficient loading of large-volume optical dipole traps
Xiaoqing Wang(王晓青), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(1): 018702.
[5] Deterministic loading of an individual atom:Towards scalable implementation of multi-qubit
Jun He(何军), Bei Liu(刘贝), Jie-Ying Wang(王杰英), Wen-Ting Diao(刁文婷), Gang Jin(靳刚), Jun-Min Wang(王军民). Chin. Phys. B, 2017, 26(11): 113702.
[6] Production of 87Rb Bose-Einstein condensates in a hybrid trap
Duan Ya-Fan (段亚凡), Jiang Bo-Nan (姜伯楠), Sun Jian-Fang (孙剑芳), Liu Kang-Kang (刘亢亢), Xu Zhen (徐震), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(5): 056701.
[7] Single atoms transferring between a magneto-optical trap and a far-off-resonance optical dipole trap
He Jun(何军), Wang Jing(王婧), Yang Bao-Dong(杨保东), Zhang Tian-Cai(张天才), and Wang Jun-Min(王军民). Chin. Phys. B, 2009, 18(8): 3404-3408.
[8] Generation of sub-half-wavelength micro-optical traps by dichroic evanescent standing waves
Zhang Jing(张静), Zhang Tian-Cai(张天才), Wang Jun-Min(王军民), and Peng Kun-Chi(彭堃墀) . Chin. Phys. B, 2007, 16(5): 1295-1299.
No Suggested Reading articles found!