Optical trapping capability of tornado circular Pearcey beams
Na-Na Liu(刘娜娜)1, Xiao-Ying Tang(唐晓莹)1, Shun-Yu Liu(刘舜禹)1, and Yi Liang(梁毅)1,2,†
1 Guangxi Key Laboratory for Relativistic Astrophysics, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; 2 State Key Laboratory of Featured Metal Materials and Lifecycle Safety for Composite Structures, Nanning 530004, China
Abstract We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles. Such tornado waves are named as tornado circular Pearcey beams (TCPBs) and produced by combining two circular Pearcey beams with different radii. Our theoretical exploration delves into various aspects, including the propagation dynamics, energy flux, orbital angular momentum, trapping force, and torque characteristics of TCPBs. The results reveal that the orbital angular momentum, trapping force, and torque of these beams can be finely tuned through the judicious manipulation of their topological charges ($l_{1}$ and $l_{2})$. Notably, we observe a precise control mechanism wherein the force diminishes with $|l_{1}+l_{2}|$ and $|l_{1}-l_{2}|$, while the torque exhibits enhancement by decreasing solely with $|l_{1}+l_{2}|$ or increasing with $|l_{1}-l_{2}|$. These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.
Received: 02 January 2024
Revised: 09 March 2024
Accepted manuscript online: 13 March 2024
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604058), the Guangxi Natural Science Foundation (Grant Nos. 2020GXNSFAA297041 and 2023JJA110112), and the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023083).
Corresponding Authors:
Yi Liang
E-mail: liangyi@gxu.edu.cn
Cite this article:
Na-Na Liu(刘娜娜), Xiao-Ying Tang(唐晓莹), Shun-Yu Liu(刘舜禹), and Yi Liang(梁毅) Optical trapping capability of tornado circular Pearcey beams 2024 Chin. Phys. B 33 054201
[1] Xin H B, Li Y C, Liu Y C, Zhang Y, Xiao Y F and Li B J 2020 Adv. Mater. 32 2001994 [2] Bunea A and Gluckstad J 2019 Laser Photon. Rev. 13 1800227 [3] Yang Y J, Ren Y X, Chen M Z, Arita Y and Rosales-Guzmán C 2021 Adv. Photon. 3 034001 [4] Liang Y, Tan L, Liu N N, Chen K J, Liang H P, Wu H H, Luo B S, Lu F X, Chen H H, Zou B S and Hong P L 2023 Phys. Rev. Appl. 19 014016 [5] He C, Shen Y J and Forbes A 2022 Light Sci. Appl. 11 205 [6] Lu F X, Wu H, Liang Y, Tan L, Tan Z F, Feng X, Hu Y, Xiang Y X, Hu X B, Chen Z G and Xu J J 2021 Phys. Rev. A 104 043524 [7] Lu F X, Tan L, Tan Z F, Wu H H and Liang Y 2021 Phys. Rev. A 104 023526 [8] Bai Y H, Lv H R, Fu X and Yang Y J 2022 Chin. Opt. Lett. 20 012601 [9] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light Sci. Appl. 8 90 [10] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161 [11] Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842 [12] Chremmos I, Efremidis N K and Christodoulides D N 2011 Opt. Lett. 36 1890 [13] Efremidis N K, Chen Z G, Segev M and Christodoulides D N 2019 Optica 6 686 [14] Jiang Y F, Huang K K and Lu X H 2012 Opt. Express 20 18579 [15] Wang F L and Liang Y 2021 Opt. Commun. 484 126681 [16] Wang F L, Lou C B and Liang Y 2018 Chin. Opt. Lett. 16 110502 [17] Tan L, Liu N N, Lu F X, Liu D M, Yu B B, Li Y T, Wu H, Chen K J, Chu Y Z, Hong P L and Liang Y 2023 Phys. Rev. A 107 043501 [18] Yang Y Z, Wu Y, Zheng X Q, Shi J Y, Luo Y J, Huang J H and Deng D M 2023 Opt. Lett. 48 3535 [19] Zhang X H, Wang F L, Bai L Y, Lou C B and Liang Y 2020 Chin. Phys. B 29 064204 [20] Brimis A, Makris K G and Papazoglou D G 2020 Opt. Lett. 45 280 [21] Jiang J J, Xu D L, Mo Z W, Cai X Z, Huang H Y, Zhang Y, Yang H B, Huang H Q, Wu Y, Shui L L and Deng D M 2022 Opt. Express 30 11331 [22] Mansour D, Brimis A, Makris K G and Papazoglou D G 2022 Phys. Rev. A 105 053514 [23] Zhang Y, Tu J L, He S L, Ding Y P, Lu Z L, Wu Y, Wang G H, Yang X B and Deng D M 2022 Opt. Express 30 1829 [24] Brimis A, Makris K G and Papazoglou D G 2023 Opt. Express 31 27582 [25] Chen X Y, Deng D M, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F, Yang X B, Liu H Z and Wang G H 2018 Opt. Lett. 43 3626 [26] Lu X F, Tan L, Liu N N, Chen C W, Chen K J, Wu H X, Xia X S, Zhang P Y, Hong P L, Zou B S and Liang Y 2023 Phys. Rev. A 108 063509 [27] Dorrah A H, Rosales-Guzmán C, Forbes A and Mojahedi M 2018 Phys. Rev. A 98 043846 [28] Jones P, Marago O M and Volpe G 2015 Optical Tweezers: Principles & Applications (Cambridge: Cambridge University Press ) p. 139
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.