INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Building and characterizing a stylus ion-trap system |
Tai-Hao Cui(崔太豪)1,2,†, Ya-Qi Wei(魏雅琪)3,†, Ji Li(李冀)4,†, Quan Yuan(袁泉)1, Shuang-Qing Dai(戴双晴)1,2, Pei-Dong Li(李沛东)1,2, Fei Zhou(周飞)1,4, Jian-Qi Zhang(张建奇)1, Zhu-Jun Zheng(郑驻军)3,†, Liang Chen(陈亮)1,4,‡, and Mang Feng(冯芒)1,4,5,§ |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of the Chinese Academy of Sciences, Beijing 100049, China; 3 Laboratory of Quantum Science and Engineering, South China University of Technology, Guangzhou 510641, China; 4 Research Center for Quantum Precision Measurement, Guangzhou Institute of Industry Technology, Guangzhou 511458, China; 5 Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities, which strongly depends on the measurement situation at hand. The stylus ion trap, formed by two concentric cylinders over a ground plane, holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps. Here we report our fabrication and characterization of the first stylus ion trap constructed in China, aiming for studying quantum optics and sensing weak electric fields in the future. We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method. Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.
|
Received: 24 December 2023
Revised: 13 January 2024
Accepted manuscript online: 26 January 2024
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.77.Ka
|
(Charged-particle beam sources and detectors)
|
|
Fund: Project supported by the Special Project for Research and Development in Key Areas of Guangdong Province, China (Grant No. 2020B0303300001), the National Natural Science Foundation of China (Grant Nos. U21A20434, 12074346, 12074390, 11835011, 11804375, and 11804308), the Fund from the Key Laboratory of Guangzhou for Quantum Precision Measurement (Grant No. 202201000010), the Science and Technology Projects in Guangzhou (Grant No. 202201011727), and the Nansha Senior Leading Talent Team Technology Project (Grant No. 2021CXTD02). |
Corresponding Authors:
Liang Chen, Mang Feng
E-mail: liangchen@wipm.ac.cn;mangfeng@wipm.ac.cn
|
Cite this article:
Tai-Hao Cui(崔太豪), Ya-Qi Wei(魏雅琪), Ji Li(李冀), Quan Yuan(袁泉), Shuang-Qing Dai(戴双晴), Pei-Dong Li(李沛东), Fei Zhou(周飞), Jian-Qi Zhang(张建奇), Zhu-Jun Zheng(郑驻军), Liang Chen(陈亮), and Mang Feng(冯芒) Building and characterizing a stylus ion-trap system 2024 Chin. Phys. B 33 043701
|
[1] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [2] Maiwald R, Leibfried D, Britton J, Bergquist J C, Leuchs G and Wineland D J 2009 Nat. Phys. 5 551 [3] Arrington C L, McKay K S, Baca E D, Coleman J J, Colombe Y, Finnegan P, Hite D A, Hollowell A E, Jördens R, Jost J D, Leibfried D, Rowen A M, Warring U, Weides M, Wilson A C, Wineland D J and Pappas D P 2013 Rev. Sci. Instrum. 84 085001 [4] Hite D A, McKay K S, Kotler S, Leibfried D, Wineland D J and Pappas D P 2017 MRS Adv. 2 2189 [5] McKay K S, Hite D A, Kent P D, Kotler S, Leibfried D, Slichter D H, Wilson A C and Pappas D P 2021 Phys. Rev. A. 104 052610 [6] Kotler S, Akerman N, Glickman Y, Keselman A and Ozeri R 2011 Nature. 473 61 [7] Burd S C, Srinivas R, Bollinger J J, Wilson A C, Wineland D J, Leibfried D, Slichter D H and Allcock D T C 2019 Science 364 1163 [8] Liu Z C, Wei Y Q, Chen L, Li J, Dai S Q, Zhou F and Feng M 2021 Phys. Rev. Appl. 16 044007 [9] Wei Y Q, Wang Y Z, Liu Z C, Cui T H, Chen L, Li J, Dai S Q, Zhou F and Feng M 2022 Science China-Phys. Mech. Astron. 65 110313 [10] Wei Y Q, Yuan Q, Chen L, Cui T H, Li J, Dai S Q, Zhou F and Feng M 2023 Phys. Rev. Appl. 19 064062 [11] Brownnutt M, Kumph M, Rabl P and Blatt R 2015 Rev. Mod. Phys. 87 1419 [12] Turchette Q A, Kielpinski, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A. 61 063418 [13] Boldin I A, Kraft A and Wunderlich C 2018 Phys. Rev. Lett. 120 023201 [14] Goldwater D, Barker P F, Bassi A and Donadi S 2019 Phys. Rev. Lett. 123 230801 [15] Milne A R, Hempel C, Li L, Edmunds C L, Slatyer H J, Ball H, Hush M R and Biercuk M J 2021 Phys. Rev. Lett. 126 250506 [16] Keller J, Hou P-Y, McCormick K C, Cole D C, Erickson S D, Wu J J, Wilson A C and Leibfried D 2021 Phys. Rev. Lett. 126 250507 [17] Hite D A, Colombe Y, Wilson A C, Brown K R, Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D and Wineland D J 2012 Phys. Rev. Lett. 109 103001 [18] Dubessy R, Coudreau T and Guidoni L 2009 Phys. Rev. A. 80 031402 [19] Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M and Leuchs G 2012 Phys. Rev. A. 86 043431 [20] Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2006 Phys. Rev. A. 73 032307 [21] Narayanan S, Daniilidis N, Möller S A, Clark R, Ziesel F, Singer K, Schmidt-Kaler F and H?ffner H 2011 J. Appl. Phys. 110 114909 [22] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 [23] Li J, Chen L, Chen Y-H, Liu Z-C, Zhang H and Feng M 2020 Chin. Phys. Lett. 37 053701 [24] Deslauriers L, Olmschenk S, Stick D, Hensinger W K, Sterk J and Monroe C 2006 Phys. Rev. Lett. 97 103007 [25] Roos C, Zeiger T, Rohde H, Nägerl H C, Eschner J, Leibfried D, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. Lett. 83 4713 [26] Epstein R J, Seidelin S, Leibfried D, Wesenberg J H, Bollinger J J, Amini J M, Blakestad R B, Britton J, Home J P, Itano W M, Jost J D, Knill E, Langer C, Ozeri R, Shiga N and Wineland D J 2007 Phys. Rev. A. 76 033411 [27] Monroe C, Meekhof D M, King B E, Jefferts S R, Itano W M, Wineland D J and Gould P 1995 Phys. Rev. Lett. 75 4011 [28] Roos C F, Leibfried D, Mundt A, Schmidt-Kaler F, Eschner J and Blatt R 2000 Phys. Rev. Lett. 85 5547 [29] Ejtemaee S and Haljan P C 2017 Phys. Rev. Lett. 119 043001 [30] Wesenberg J H, Epstein R J, Leibfried D, Blakestad R B, Britton J, Home J P, Itano W M, Jost J D, Knill E, Langer C, Ozeri R, Seidelin S and Wineland D J 2007 Phys. Rev. A 76 053416 [31] Daniilidis N, Narayanan S, Möller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz S, Schmidt-Kaler F and Häffner H 2012 New J. Phys. 14 079504 [32] Kjaergaard N, Hornekaer L, Thommesen A M, Videsen Z and Drewsen M 2000 Appl. Phys. B 71 207 [33] Gulde S, Rotter D, Barton P, Schmidt-Kaler F, Blatt R and Hogervorst W 2001 Appl. Phys. B 73 861 [34] Labaziewicz J, Ge Y, Leibrandt D R, Wang S X, Shewmon R and Chuang I L 2008 Phys. Rev. Lett. 101 180602 [35] Wang S X, Ge Y, Labaziewicz J, Dauler E, Berggren K and Chuang I L 2010 Appl. Phys. Lett. 97 244102 [36] Sedlacek J A, Stuart J, Slichter D H, Bruzewicz C D, McConnell R, Sage J M and Chiaverini J 2018 Phys. Rev. A. 98 063430 [37] Zeng J, Yan X T, Yao Y, Zhao Y J, Chen L and Feng M 2023 Phys. Rev. A. 108 023121 [38] Daniilidis N, Gerber S, Bolloten G, Ramm M, Ransford A, Ulin-Avila E, Talukdar I and Häffner H 2014 Phys. Rev. B. 89 245435 [39] An D, Matthiesen C, Urban E and H"affner H 2019 Phys. Rev. A. 100 063405 [40] de Leon N P, Itoh K M, Kim D, Mehta K K, Northup T E, Paik H, Palmer B S, Samarth N, Sangtawesin S and Steuerman D W 2021 Science 372 6539 [41] Lordi V and Nichol J M 2021 MRS Bull. 46 589 [42] Brown K R, Chiaverini J, Sage J M and Häffner H 2021 Nat Rev Mater. 6 892 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|