Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084205    DOI: 10.1088/1674-1056/28/8/084205

Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope

You Li(李优)1,2, Yao-Cun Li(李垚村)1,2, Jun-Yong Zhang(张军勇)1, Yan-Li Zhang(张艳丽)1, Xue-Mei Li(李雪梅)3
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Mathematics, Physics & Information Science, Zhejiang Ocean University, Zhoushan 316022, China
Abstract  A method of single-shot phase-shifting digital holography with a photon-sieve-filtering telescope is proposed. Three copy images with different phases are first generated by use of a monofocal photon-sieve filter in Kepler telescope, and then interfere with the reference plane wave by a beam combiner. The hologram is captured by a charge-coupled device (CCD) in one single exposure. The complex-valued amplitude of the test object can be reconstructed by three-step phase-shifting interferometry through three frames of extracted sub-interferograms from the single-exposure hologram. The principle and simulation experiments are carried out and verified the validity of our proposed method. This method can be applied for snapshot imaging and three-dimensional object construction.
Keywords:  digital holography      phase shift      diffractive lenses      frequency filtering  
Received:  22 January 2019      Revised:  28 April 2019      Accepted manuscript online: 
PACS:  42.40.-i (Holography)  
  42.87.Bg (Phase shifting interferometry)  
Fund: Project supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2017292), the National Natural Science Foundation of China (Grant No. 61775222), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16A050001).
Corresponding Authors:  Jun-Yong Zhang     E-mail:

Cite this article: 

You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅) Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope 2019 Chin. Phys. B 28 084205

[1] Geng J 2013 Adv. Opt. Photon. 5 456
[2] Wang Y, Liu Q, Wang Jun and Wang Q H 2018 Chin. Phys. B 27 034202
[3] Pedrini G, Fröning P, Tiziani H J and Santoyo F M 1999 Opt. Commun. 164 257
[4] Feng Z Y, Jia F, Zhou J H and Hu M L 2008 Chin. J. Lasers 35 2017 (in Chinese)
[5] Nobukawa T and Nomura T 2016 Opt. Express 24 21001
[6] Hua L L, Xu N and Yang G 2014 Chin. Phys. B 23 064201
[7] Muroi T, Katano Y, Kinoshita N and Ishii N 2017 Opt. Lett. 42 2287
[8] Visessamit J and Buranasiri P 2016 Imaging Applied Optics, July 25-28, 2016, Heidelberg, Germany, p. JW4A.8 (online)
[9] Khmaladze A, Kim M and Lo C M 2008 Opt. Express 16 10900
[10] Kemper B 2017 Digital Holography and Three-Dimensional Imaging, OSA Technical Digest, p. Tu2A.2 (online)
[11] Gabor D 1948 Nature 161 777
[12] Leith N E and Upatnieks J 1962 J. Opt. Soc. Am. 52 1123
[13] Yamaguchi I and Zhang T 1997 Opt. Lett. 22 1268
[14] Zhang T and Yamaguchi I 1998 Opt. Lett. 23 1221
[15] Goodman J W and Lawrence R W 1967 Appl. Phys. Lett. 11 77
[16] Liang M D, Chen L, Hu Y H, Lin W T and Chen Y H 2018 Chin. Phys. B 27 104202
[17] Nakata T and Watanabe M 2009 Appl. Opt. 48 1322
[18] Ma B H, Yao B L, Li Z and Ye T 2011 Appl. Opt. 50 2588
[19] Chen X X, Painchaud Y, Ogusu K and Li H P 2010 J. Lightwave Technol. 28 2017
[20] Sha Z, Feng H and Zeng Z M 2017 Opt. Express 25 4831
[21] Zhang Y, Pedrini G, Osten W and Tiziani H J 2004 Opt. Lett. 29 1787
[22] Nomura T and Nisaka K 2017 Joint Symposia Nanophotonics and Digital Photonics, p. 31aOD3 (online)
[23] Nomura T, Murata S, Nitanai E and Numata T 2006 Appl. Opt. 45 4873
[24] Awatsuji Y, Sasada M and Kubota T 2004 Appl. Phys. Lett. 85 1069
[25] Wang X and Zhao D 2006 Opt. Commun. 268 240
[26] Xu X, Cai L, Wang Y, Yang X, Meng X, Dong G, Shen X and Zhang H 2007 Appl. Phys. Lett. 90 121124
[27] Kipp L, Skibowski M, Johnson R L, Berndt R, Adelung R, Harm S and Seemann R 2001 Nature 414 184
[28] Memmolo P, Distante C, Paturzo M, Finizio A, Ferraro P and Javidi B 2011 Opt. Lett. 36 1945
[29] Cai L Z, Liu Q and Yang X L 2003 Opt. Lett. 28 1808
[30] Xie J, Zhang J Y, Yue Y and Zhang Y L 2018 Acta Phys. Sin. 67 104201 (in Chinese)
[31] Zhang F, Pedrini G and Osten W 2006 SPIE 6188 618814-1
[1] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[2] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[3] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[4] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[5] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[6] Repulsive bubble-bubble interaction in ultrasonic field
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yao-Rong Wu(武耀蓉), Yang Shen(沈阳), and Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2021, 30(10): 104301.
[7] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[8] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[9] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[10] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[11] Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography
Ying Wang(王莹), Qi Liu(刘琦), Jun Wang(王君), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2018, 27(3): 034202.
[12] Speckle reduction by selective spatial-domain mask in digital holography
Ming-Da Liang(梁明大), Li Chen(陈丽), Yi-Hua Hu(胡义华), Wei-Tao Lin(林伟涛), Yong-Hao Chen(陈永昊). Chin. Phys. B, 2018, 27(10): 104202.
[13] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[14] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[15] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
No Suggested Reading articles found!