ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform |
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠)† |
School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract Fresnel incoherent correlation holography (FINCH) has the ability to generate three-dimensional images with a super-resolution by using incoherent sources. However, there are unwanted direct current term and twin image in interferograms, so it is of great significance to find a method to eliminate them. Phase-shifting technology is a most widely used technique for this task, but its three-step phase-shifting is not suitable for the instantaneous measurement of dynamic objects, and the quality of reconstructed image with the traditional two-step phase-shifting is lower. In this paper, we present a method of enhancing the resolution through using a two-step phase-shifting technology based on the discrete wavelet transform. After two-step phase-shifting, the resulting hologram is a superposition of multiple forms. The frequency of the resulting hologram is decomposed into different levels through using discrete wavelet transform, then the image is reconstructed after retrieving the low frequency band. Various experiments have verified the effectiveness of this method.
|
Received: 18 May 2020
Revised: 01 June 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
42.40.Lx
|
(Diffraction efficiency, resolution, and other hologram characteristics)
|
|
42.30.Va
|
(Image forming and processing)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51175479 and U1704155), the Natural Science Foundation of Henan Province, China (Grant Nos. 16A140035 and 18A140032), and the Program for Innovative Research Team (in Science and Technique) in the University of Henan Province, China (Grant No. 18IRTSTHN016). |
Corresponding Authors:
†Corresponding author. E-mail: gqx1205@zzu.edu.cn
|
Cite this article:
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠) Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform 2020 Chin. Phys. B 29 124201
|
[1] Yu Z H, Tian J R and Song Y R Chin. Phys. B 23 094206 DOI: 10.1088/1674-1056/23/9/0942062014 [2] Gabor D Nature 161 777 DOI: 10.1038/161777a01948 [3] Goodman, Joseph W and Lawrence R W Appl. Phys. Lett. 11 77 DOI: 10.1063/1.17550431967 [4] Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh A K, Takeda M and Wilke M Appl. Opt. 53 G44 DOI: 10.1364/AO.53.000G442014 [5] Liu J P, Tatsuki T, Yoshio H and Poon T C Appl. Sci. 8 143 DOI: 10.3390/app80101432018 [6] Weng J W, David C C and Myung K K Opt. Commun. 366 88 DOI: 10.1016/j.optcom.2015.12.0392016 [7] Dubois, F, Luc J and Legros J C Appl. Opt. 38 7085 DOI: 10.1364/AO.38.0070851999 [8] He J R, Ren H, Tian Y Z, Gong Q X, Du Y L, Liu X M, Shan C X, Su J P and Ma F Y J. Opt. 21 025701 DOI: 10.1088/2040-8986/aaf6de2018 [9] Cossairt O, Nathan M and Mohit G IEEE International Conference on Computational Photography (ICCP), May 2-4, Santa Clara, CA, USA, pp. 1-9 DOI: 10.1109/ICCPHOT.2014.68318192014 [10] Kozacki T, Maksymilian C, Zaperty W and Makowski P Digital Holography and Three-Dimensional Imaging, July 25-28, 2016, Heidelberg, Germany, p. DM4E.5 DOI: 10.1364/DH.2016.DM4E.52016 [11] Bai Y H, Zang R H, Wang P, Ma F Y, Du Y L, Duan Z Y and Gong Q X Acta Phys. Sin. 67 064202 (in Chinese) DOI: 10.7498/aps.67.201721272018 [12] Choi K, Joo K I, Lee T H, Kim H R, Yim J, Do H and Min S W Opt. Express 27 4818 DOI: 10.1364/OE.27.0048182019 [13] Tang M Y, Wu M T, Zang R H, Rong T D, Du Y L, Ma F Y, Duan Z Y and Gong Q X Acta. Phys. Sin. 68 104204 (in Chinese) DOI: 10.7498/aps.68.201822162019 [14] Rosen J and Gary B Nat. Photon. 2 190 DOI: 10.1038/nphoton.2007.3002008 [15] Rosen J and Gary B Opt. Lett. 32 912 DOI: 10.1364/OL.32.0009122007 [16] Katz B, Rosen J, Kelner R and Brooker G Opt. Express 20 9109 DOI: 10.1364/OE.20.0091092012 [17] Bouchal P and Zdenek B J. Eur. Opt. Soc. Rap. Public. 8 13011 DOI: 10.2971/jeos.2013.130112013 [18] Bang L T, Wu H Y, Zhao Y, Kim E G and Kim N J. Microscopy 265 372 DOI: 10.1111/jmi.2017.265.issue-32017 [19] Markus F, Lena G, Carsten B, Martin H and Nils C G Opt. Express 25 19398 DOI: 10.1364/OE.25.0193982017 [20] Xu T X, He J R, Ren H, Zhao Z C, Ma G Q, Gong Q X, Yang S N, Dong L and Ma F Y Opt. Express 25 29207 DOI: 10.1364/OE.25.0292072017 [21] Nygate Y N, Gyanender S, Itay B and Natan T S Opt. Lett. 43 2587 DOI: 10.1364/OL.43.0025872018 [22] Huang P S and Song Z Appl. Opt. 45 5086 DOI: 10.1364/AO.45.0050862006 [23] Yamaguchi I Chin. Opt. Lett. 7 1104 DOI: 10.3788/COL2009 [24] Wan Y H, Man T L, Wu F, Kim M K and Wang DY Opt. Laser Eng. 86 38 DOI: 10.1016/j.optlaseng.2016.05.0042016 [25] Meng X F, Cai L Z, Xu X F, Yang X L, Shen X X, Dong G Y and Wang Y R Opt. Lett. 31 1414 DOI: 10.1364/OL.31.0014142006 [26] Liu J P and Poon T C Opt. Lett. 34 250 DOI: 10.1364/OL.34.0002502009 [27] Liu J P, Poon T C, Jhou G S and Chen P J Appl. Opt. 50 2443 DOI: 10.1364/AO.50.0024432011 [28] Qin W, Yang X Q, Li Y Y, Peng X, Qu X H and Gao B Z J. Biomed. Opt. 19 060503 DOI: 10.1117/1.JBO.19.6.0605032014 [29] Yadav P, Tiwari P and Kumar V 2012 International Conference on Innovations in Engineering and Technology (ICIET'2013), December 25-26, 2013, Bangkok, Thailand, p. 47 DOI: 10.15242/IIE.E1213576 [30] Sivakumar R and Mohan E Int. J. Appl. Eng. Res. 139811 http://www.ripublication.com/ijaer18/ijaerv13n11_148.pdf2018 [31] Pahuja R and Ramulu M J. Mater. Process. Tech. 273 116249 DOI: 10.1016/j.jmatprotec.2019.05.0302019 [32] Kingsbury N Phil. Trans. R. Soc. Lond. A 357 2543 DOI: 10.1098/rsta.1999.04471999 [33] Daubechies I IEEE T. Inform. Theory 36 961 DOI: 10.1109/18.571991990 [34] Song K and Jing Z Microsc. 5 13 (in Chinese) DOI: 10.3969/j.issn.1002-2279.2004.05.0142004 [35] Li J C Song Q H and Picart P Chin. J. Laser 41 0209008 DOI: 10.3788/CJL2014 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|