Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124201    DOI: 10.1088/1674-1056/abab7d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform

Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠)†
School of Physics and Microeletronics, Zhengzhou University, Zhengzhou 450001, China
Abstract  Fresnel incoherent correlation holography (FINCH) has the ability to generate three-dimensional images with a super-resolution by using incoherent sources. However, there are unwanted direct current term and twin image in interferograms, so it is of great significance to find a method to eliminate them. Phase-shifting technology is a most widely used technique for this task, but its three-step phase-shifting is not suitable for the instantaneous measurement of dynamic objects, and the quality of reconstructed image with the traditional two-step phase-shifting is lower. In this paper, we present a method of enhancing the resolution through using a two-step phase-shifting technology based on the discrete wavelet transform. After two-step phase-shifting, the resulting hologram is a superposition of multiple forms. The frequency of the resulting hologram is decomposed into different levels through using discrete wavelet transform, then the image is reconstructed after retrieving the low frequency band. Various experiments have verified the effectiveness of this method.
Keywords:  holography      phase-shifting      wavelet transform  
Received:  18 May 2020      Revised:  01 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51175479 and U1704155), the Natural Science Foundation of Henan Province, China (Grant Nos. 16A140035 and 18A140032), and the Program for Innovative Research Team (in Science and Technique) in the University of Henan Province, China (Grant No. 18IRTSTHN016).
Corresponding Authors:  Corresponding author. E-mail: gqx1205@zzu.edu.cn   

Cite this article: 

Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠) Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform 2020 Chin. Phys. B 29 124201

[1] Yu Z H, Tian J R and Song Y R Chin. Phys. B 23 094206 DOI: 10.1088/1674-1056/23/9/0942062014
[2] Gabor D Nature 161 777 DOI: 10.1038/161777a01948
[3] Goodman, Joseph W and Lawrence R W Appl. Phys. Lett. 11 77 DOI: 10.1063/1.17550431967
[4] Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh A K, Takeda M and Wilke M Appl. Opt. 53 G44 DOI: 10.1364/AO.53.000G442014
[5] Liu J P, Tatsuki T, Yoshio H and Poon T C Appl. Sci. 8 143 DOI: 10.3390/app80101432018
[6] Weng J W, David C C and Myung K K Opt. Commun. 366 88 DOI: 10.1016/j.optcom.2015.12.0392016
[7] Dubois, F, Luc J and Legros J C Appl. Opt. 38 7085 DOI: 10.1364/AO.38.0070851999
[8] He J R, Ren H, Tian Y Z, Gong Q X, Du Y L, Liu X M, Shan C X, Su J P and Ma F Y J. Opt. 21 025701 DOI: 10.1088/2040-8986/aaf6de2018
[9] Cossairt O, Nathan M and Mohit G IEEE International Conference on Computational Photography (ICCP), May 2-4, Santa Clara, CA, USA, pp. 1-9 DOI: 10.1109/ICCPHOT.2014.68318192014
[10] Kozacki T, Maksymilian C, Zaperty W and Makowski P Digital Holography and Three-Dimensional Imaging, July 25-28, 2016, Heidelberg, Germany, p. DM4E.5 DOI: 10.1364/DH.2016.DM4E.52016
[11] Bai Y H, Zang R H, Wang P, Ma F Y, Du Y L, Duan Z Y and Gong Q X Acta Phys. Sin. 67 064202 (in Chinese) DOI: 10.7498/aps.67.201721272018
[12] Choi K, Joo K I, Lee T H, Kim H R, Yim J, Do H and Min S W Opt. Express 27 4818 DOI: 10.1364/OE.27.0048182019
[13] Tang M Y, Wu M T, Zang R H, Rong T D, Du Y L, Ma F Y, Duan Z Y and Gong Q X Acta. Phys. Sin. 68 104204 (in Chinese) DOI: 10.7498/aps.68.201822162019
[14] Rosen J and Gary B Nat. Photon. 2 190 DOI: 10.1038/nphoton.2007.3002008
[15] Rosen J and Gary B Opt. Lett. 32 912 DOI: 10.1364/OL.32.0009122007
[16] Katz B, Rosen J, Kelner R and Brooker G Opt. Express 20 9109 DOI: 10.1364/OE.20.0091092012
[17] Bouchal P and Zdenek B J. Eur. Opt. Soc. Rap. Public. 8 13011 DOI: 10.2971/jeos.2013.130112013
[18] Bang L T, Wu H Y, Zhao Y, Kim E G and Kim N J. Microscopy 265 372 DOI: 10.1111/jmi.2017.265.issue-32017
[19] Markus F, Lena G, Carsten B, Martin H and Nils C G Opt. Express 25 19398 DOI: 10.1364/OE.25.0193982017
[20] Xu T X, He J R, Ren H, Zhao Z C, Ma G Q, Gong Q X, Yang S N, Dong L and Ma F Y Opt. Express 25 29207 DOI: 10.1364/OE.25.0292072017
[21] Nygate Y N, Gyanender S, Itay B and Natan T S Opt. Lett. 43 2587 DOI: 10.1364/OL.43.0025872018
[22] Huang P S and Song Z Appl. Opt. 45 5086 DOI: 10.1364/AO.45.0050862006
[23] Yamaguchi I Chin. Opt. Lett. 7 1104 DOI: 10.3788/COL2009
[24] Wan Y H, Man T L, Wu F, Kim M K and Wang DY Opt. Laser Eng. 86 38 DOI: 10.1016/j.optlaseng.2016.05.0042016
[25] Meng X F, Cai L Z, Xu X F, Yang X L, Shen X X, Dong G Y and Wang Y R Opt. Lett. 31 1414 DOI: 10.1364/OL.31.0014142006
[26] Liu J P and Poon T C Opt. Lett. 34 250 DOI: 10.1364/OL.34.0002502009
[27] Liu J P, Poon T C, Jhou G S and Chen P J Appl. Opt. 50 2443 DOI: 10.1364/AO.50.0024432011
[28] Qin W, Yang X Q, Li Y Y, Peng X, Qu X H and Gao B Z J. Biomed. Opt. 19 060503 DOI: 10.1117/1.JBO.19.6.0605032014
[29] Yadav P, Tiwari P and Kumar V 2012 International Conference on Innovations in Engineering and Technology (ICIET'2013), December 25-26, 2013, Bangkok, Thailand, p. 47 DOI: 10.15242/IIE.E1213576
[30] Sivakumar R and Mohan E Int. J. Appl. Eng. Res. 139811 http://www.ripublication.com/ijaer18/ijaerv13n11_148.pdf2018
[31] Pahuja R and Ramulu M J. Mater. Process. Tech. 273 116249 DOI: 10.1016/j.jmatprotec.2019.05.0302019
[32] Kingsbury N Phil. Trans. R. Soc. Lond. A 357 2543 DOI: 10.1098/rsta.1999.04471999
[33] Daubechies I IEEE T. Inform. Theory 36 961 DOI: 10.1109/18.571991990
[34] Song K and Jing Z Microsc. 5 13 (in Chinese) DOI: 10.3969/j.issn.1002-2279.2004.05.0142004
[35] Li J C Song Q H and Picart P Chin. J. Laser 41 0209008 DOI: 10.3788/CJL2014
[1] Reconstruction resolution enhancement of EPISM based holographic stereogram with hogel spatial multiplexing
Yunpeng Liu(刘云鹏), Teng Zhang(张腾), Jian Su(苏健), Tao Jing(荆涛), Min Lin(蔺敏), Pei Li(李沛), and Xingpeng Yan(闫兴鹏). Chin. Phys. B, 2022, 31(4): 044201.
[2] Three-step self-calibrating generalized phase-shifting interferometry
Yu Zhang(张宇). Chin. Phys. B, 2022, 31(3): 030601.
[3] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[4] Nearfield acoustic holography in a moving medium based on particle velocity input using nonsingular propagator
Bi-Chun Dong(董必春), Run-Mei Zhang(张润梅), Bin Yuan(袁彬), and Chuan-Yang Yu(俞传阳). Chin. Phys. B, 2022, 31(2): 024303.
[5] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[6] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[7] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[8] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[9] Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(12): 123202.
[10] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[11] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[12] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[13] Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography
Ying Wang(王莹), Qi Liu(刘琦), Jun Wang(王君), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2018, 27(3): 034202.
[14] Backward rescattered photoelectron holography in strong-field ionization
Fujun Chen(陈富军), Ruxian Yao(姚汝贤), Jianghua Luo(罗江华), Changqing Wang(王长清). Chin. Phys. B, 2018, 27(10): 103202.
[15] Speckle reduction by selective spatial-domain mask in digital holography
Ming-Da Liang(梁明大), Li Chen(陈丽), Yi-Hua Hu(胡义华), Wei-Tao Lin(林伟涛), Yong-Hao Chen(陈永昊). Chin. Phys. B, 2018, 27(10): 104202.
No Suggested Reading articles found!