Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 015202    DOI: 10.1088/1674-1056/22/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Reconstruction of heat flux profile on the HL-2A divertor plate with a three-dimensional analysis model

Gao Jin-Ming (高金明), Li Wei (李伟), Xia Zhi-Wei (夏志伟), Pan Yu-Dong (潘宇东), Lu Jie (卢杰), Yi Ping (易萍), Liu Yi (刘仪)
Southwestern Institute of Physics, Chengdu 610041, China
Abstract  A three-dimensional analysis model based on finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface temperature measured by infrared thermography diagnostics. The numerical simulations of surface heating due to localized power bursts and the power deposition calculations demonstrate that this analysis can provide accurate results and useful information about localized hot spots compared with the normal one- and two-dimensional calculations. In this paper, the details of this three-dimensional analysis are presented, and some results in ohmic heating and electron cyclotron resonant heating (ECRH) discharge on HL-2A are given.
Keywords:  three-dimensional analysis      heat flux      divertor plate  
Received:  23 April 2012      Revised:  19 June 2012      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Rk (Power exhaust; divertors)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10805016) and the National Magnetic Confinement Fusion Science Program, China (Grant No. 2009GB104008).
Corresponding Authors:  Gao Jin-Ming     E-mail:  gaojm@swip.ac.cn

Cite this article: 

Gao Jin-Ming (高金明), Li Wei (李伟), Xia Zhi-Wei (夏志伟), Pan Yu-Dong (潘宇东), Lu Jie (卢杰), Yi Ping (易萍), Liu Yi (刘仪) Reconstruction of heat flux profile on the HL-2A divertor plate with a three-dimensional analysis model 2013 Chin. Phys. B 22 015202

[1] Herrmann A, Junker W, Gunther K, Bosch S, Kaufmann M, Neuhauser J, Pautasso G, Richter T, Schneider R and ASDEX Upgrade Team 1995 Plasma Phys. Control. Fusion 37 17
[2] Eich T, Herrmann A, Pautasso G, Andrew P, Asakura N, Boedo J A, Corre Y, Fenstermacher M E, Fuchs J C, Fundamenski W, Federici G, Gauthier E, Goncalves B, Gruber O, Kirk A, Leonard A W, Loarte A, Matthews G F, Neuhauser J, Pitts R A, Riccardo V and Silva C 2005 J. Nucl. Mater. 337-339 669
[3] Eich T, Herrmann A, Neuhauser J and ASDEX Upgrade Team 2003 Phys. Rev. Lett. 91 195003
[4] Eich T, Herrmann A, Neuhauser J, Dux R, Fuchs J C, Gunter S, Horton L D, Kallenbach A, Lang P T, Maggi C F, Maraschek M, Rohde V, Schneider W and ASDEX Upgrae Team 2005 Plasma Phys. Control. Fusion 47 815
[5] Riccardo V, Andrew P, Ingesson L C and Maddaluno G 2002 Plasma Phys. Control. Fusion 44 905
[6] C S Pitcher and P C Stangeby 1997 Plasma Phys. Control. Fusion 39 779
[7] Eich T, Andrew P, Herrmann A, Fundamenski W, Loarte A, Pitts R A and JET-EFDA contributors 2007 Plasma Phys. Control. Fusion 49 573
[8] Li Wei, Pan Y D, Yan L W, Yang Q W, Duan X R, Rao J, Feng B B, Lu J, Yi P and Ding X T 2007 34th EPS Conf. on Plasma Physics, July 2-6, 2007, Warsaw, Poland
[9] Herrmann A and ASDEX Upgrade team 2001 28th EPS Conf. on Contr. Fusion and Plasma Phys., June 18-22, 2001, Funchal, Portugal
[10] Daviot R, Gauthier E, Carpentier S, Corre Y, Gardarein J L and JET EFDA Contributors 2009 J. Nucl. Mater. 390-391 1070
[11] Gao J M, Liu Y, Li W, Cui Z Y, Zhou Y, Huang Y and Ji X Q 2010 Chin. Phys. B 19 115201
[12] Petrie T W, Hill D N, Allen S L, Brooks N H, Buchenauer D A, Cuthbertson J W, Evans T E, Ghendrih P, Lasnier C J, Leonard A W, Maingi R, Porter G D, Whyte D G, Groebner R J, Jong R A, Mahdavi M A, Thompson S J, West W P and Wood R D 1997 Nucl. Fusion 37 321
[1] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[2] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[3] Calculation of radiative heat flux on irregular boundaries in participating media
Yu-Jia Sun(孙玉佳) and Shu Zheng(郑树). Chin. Phys. B, 2020, 29(12): 124401.
[4] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[5] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[6] Macro-performance of multilayered thermoelectric medium
Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法). Chin. Phys. B, 2017, 26(12): 127307.
[7] Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
F M Abbasi, M Mustafa, S A Shehzad, M S Alhuthali, T Hayat. Chin. Phys. B, 2016, 25(1): 014701.
[8] Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux
Swati Mukhopadhyay, Iswar Chandra Mandal. Chin. Phys. B, 2014, 23(4): 044702.
[9] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[10] Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity
Ahmed M. Megahed. Chin. Phys. B, 2013, 22(9): 094701.
[11] Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux
Krishnendu Bhattacharyya. Chin. Phys. B, 2013, 22(7): 074705.
No Suggested Reading articles found!