Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030501    DOI: 10.1088/1674-1056/ad1030
GENERAL Prev   Next  

A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map

Baichi Chen(陈柏池)1,†, Linqing Huang(黄林青)1,†, Shuting Cai(蔡述庭)2, Xiaoming Xiong(熊晓明)2, and Hui Zhang(张慧)3,‡
1 School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China;
2 School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China;
3 School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract  In the era of big data, the number of images transmitted over the public channel increases exponentially. As a result, it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image. In this paper, an improved sine map (ISM) possessing a larger chaotic region, more complex chaotic behavior and greater unpredictability is proposed and extensively tested. Drawing upon the strengths of ISM, we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain (WDLIC). The WDLIC employs selective encryption to strike a satisfactory balance between security and speed. Initially, only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion. Then leveraging the statistical properties in wavelet domain, Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands. Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
Keywords:  image encryption      discrete wavelet transform      1D-chaotic system      selective encryption      Gaussianization operation  
Received:  21 October 2023      Revised:  20 November 2023      Accepted manuscript online:  28 November 2023
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  43.60.Hj (Time-frequency signal processing, wavelets)  
Fund: Project supported by the Key Area Research and Development Program of Guangdong Province, China (Grant No. 2022B0701180001), the National Natural Science Foundation of China (Grant No. 61801127), the Science Technology Planning Project of Guangdong Province, China (Grant Nos. 2019B010140002 and 2020B111110002), and the Guangdong–Hong Kong–Macao Joint Innovation Field Project (Grant No. 2021A0505080006).
Corresponding Authors:  Hui Zhang     E-mail:  zh2008@gdut.edu.cn

Cite this article: 

Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧) A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map 2024 Chin. Phys. B 33 030501

[1] Wu H, Ye G, Yap W S and Goi B M 2023 Opt. Laser Technol. 167 109755
[2] Ye G, Wu H, Liu M and Huang X 2023 Chaos, Solitons & Fractals 171 113469
[3] Gong L H and Luo H X 2023 Opt. Laser Technol. 167 109665
[4] Lai Q and Liu Y 2023 Expert Systems with Applications 223 119923
[5] Nestor T, Jacques K, Bassem A, Abdullah M I, Kaoru H and Ahmed A E 2020 Information Sciences 515 191
[6] Wang X Y and Liu P B 2022 IEEE Transactions on Circuits and Systems I: Regular Papers. 69 1291
[7] Pak C and Huang L L 2017 Signal Processing 138 129
[8] Zhou Y C, Bao L and Chen L P 2014 Signal Processing 97 172
[9] Wang S M, Peng Q Q and Du B X 2022 Opt. Laser Technology 148 107753
[10] Zhu Y, Wang C H, Sun J R and Yu F 2023 Mathematics 11 767
[11] Wu Y R, Zhang L L, Stefano B and Wan S H 2023 IEEE Transactions on Industrial Informatics 19 2089
[12] Chai X L, Fu X L, Gan Z H, Lu Y and Chen Y R 2019 Signal Processing 155 44
[13] Kang Y L, Huang L Q, He Y, Xiong X M, Cai S T and Zhang H Y 2020 Symmetry-Basel 12 1393
[14] Sasikaladevi N, Geetha K, Sriharshini K and Aruna M D 2020 Opt. Laser Technol. 127 106173
[15] Banik A, Laiphrakpam D S, Agrawal A and Patgiri R 2022 Digital Signal Processing 129 103639
[16] Luo Y L, Ouyang X, Liu J X and Cao L C 2019 IEEE Access 7 38507
[17] Luo Y L, Tang S B, Liu J X, Cao L C and Qiu S H 2020 Opt. Lasers Eng. 124 105836
[18] Gao Y J, Xie H W, Zhang J and Zhang H 2022 Physica A 598 127334
[19] Lai Q, Wan Z Q, Zhang H and Chen G R 2023 IEEE Transactions on Neural Networks and Learning Systems. 34 7824
[20] Lai Q and Chen Z J 2023 Chaos, Solitons & Fractals 170 113341
[21] Lai Q, Yang L and Chen G R 2023 IEEE Transactions on Industrial Electronics 1
[22] Farah M A B, Guesmi R, Kachouri A and Samet M 2020 Opt. Laser Technol. 121 105777
[23] Huang Z W and Zhou N R 2022 Opt. Laser Technol. 149 107879
[24] Wang M M, Zhou N R, Li L and Xu M T 2022 Expert Systems with Applications 207 118067
[25] Huang Z J, Cheng S, Gong L H and Zhou N R 2020 Opt. Lasers Eng. 124 105821
[26] Yu S S, Zhou N R, Gong L H and Nie Z 2020 Opt. Lasers Eng. 124 105816
[27] Joshi A B, Kumar D, Gaffar A and Mishra D C 2020 Opt. Lasers Eng. 133 106139
[28] Gurpreet K, Rekha A and Vinod P 2022 Journal of King Saud University-Computer and Information Sciences 2022 5883
[29] Jiang D H, Liu L D, Zhu L Y, Wang X Y, Rong X W and Chai H X 2021 Signal Processing 188 108220
[30] Chai X L, Bi J Q, Gan Z H, Liu X X, Zhang Y S and Chen Y R 2020 Signal Processing 176 107684
[31] Ye G D, Pan C, Dong Y X, Shi Y and Huang X L 2020 Signal Processing 172 107563
[32] Huo D M, Zhu Z L, Wei L S, Han C and Zhou X 2021 Opt. Commun. 492 126976
[33] Wen H P, Chen Z F, Zheng J H, Huang Y M, Li S W, Ma L C, Lin Y T, Liu Z, Li R, Liu L H, Lin W X, Yang J Y, Zhang C F and Yang H D 2022 Entropy 24 1332
[34] Oteko T L and Mbuyu S 2019 IEEE Access 7 103463
[35] Zhou N R, Hu L L, Huang Z W, Wang M M and Luo G S 2024 Expert Systems with Applications 238 122052
[36] Hua Z Y, Zhou Y C and Huang H J 2019 Information Sciences 480 403
[37] Midoun M A, Wang X Y and Talhaoui M Z 2021 Opt. Lasers Eng. 139 106485
[38] Talhaoui M Z, Wang X Y and Midoun M A 2021 The Visual Computer 37 541
[39] Richman J S and Moorman J R 2000 American Journal of Physiology-Heart and Circulatory Physiology. 278 H2039
[40] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J and Vo S 2022 IEEE Access 10 116031
[41] Chen H P, Bai E J, Jiang X Q and Wu Y 2022 IEEE Access 10 116031
[42] Shen Y L, Huang J, Chen L L, Wen T, Li T Y and Zhang G D 2023 Entropy 25 753
[43] Huang Q Y, Huang L Q, Cai S T, Xiong X M and Zhang H 2023 Mathematics 11 4411
[1] Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星). Chin. Phys. B, 2024, 33(3): 034204.
[2] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[3] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[4] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[5] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[6] Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[7] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[8] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[9] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[12] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[13] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
No Suggested Reading articles found!