|
|
Reweighted ensemble dynamics simulations: Theory, improvement, and application |
Gong Lin-Chen (龚麟宸)a, Zhou Xin (周昕)b, Ouyang Zhong-Can (欧阳钟灿)a c |
a Center for Advanced Study, Tsinghua University, Beijing 100084, China;
b School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
c Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Based on multiple parallel short molecular dynamics simulation trajectories, we designed the reweighted ensemble dynamics (RED) method to more efficiently sample complex (biopolymer) systems, and to explore their hierarchical metastable states. Here we further present an improvement to depress statistical errors of the RED and we discuss a few keys in practical application of the RED, provide schemes on selection of basis functions, and determination of the free parameter in the RED. We illustrate the application of the improvements in two toy models and in the solvated alanine dipeptide. The results show the RED enables us to capture the topology of multiple-state transition networks, to detect the diffusion-like dynamical behavior in an entropy-dominated system, and to identify solvent effects in the solvated peptides. The illustrations serve as general applications of the RED in more complex biopolymer systems.
|
Received: 20 November 2014
Revised: 19 January 2015
Accepted manuscript online:
|
PACS:
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175250). |
Corresponding Authors:
Zhou Xin
E-mail: xzhou@ucas.ac.cn
|
About author: 02.70.Ns; 87.15.A-; 82.20.Wt |
Cite this article:
Gong Lin-Chen (龚麟宸), Zhou Xin (周昕), Ouyang Zhong-Can (欧阳钟灿) Reweighted ensemble dynamics simulations: Theory, improvement, and application 2015 Chin. Phys. B 24 060202
|
[1] |
Torrie G M and Valleau J P 1977 J. Comput. Phys. 23 187
|
[2] |
Bartels C and Karplus M 1998 J. Phys. Chem. B 102 865
|
[3] |
Maragakis P, van der Vaart A and Karplus M 2009 J. Phys. Chem. B 113 4664
|
[4] |
Frantz D D, Freeman D L and Doll J D 1990 J. Chem. Phys. 93 2769
|
[5] |
Berg B A and Neuhaus T 1991 Phys. Lett. B 267 249
|
[6] |
Marinari E and Parisi G 1992 Europhys. Lett. 19 451
|
[7] |
Lyubartsev A P, Martsinovski A A, Shevkunov S V and Vorontsov-Velyaminov P N 1992 J. Chem. Phys. 96 1776
|
[8] |
Grubmüller H 1995 Phys. Rev. E 52 2893
|
[9] |
Voter A F 1997 Phys. Rev. Lett. 78 3908
|
[10] |
Miron R A and Fichthorn K A 2004 Phys. Rev. Lett. 93 128301
|
[11] |
Zhou X, Jiang Y, Kremer K, Ziock H and Rasmussen S 2006 Phys. Rev. E 74 035701
|
[12] |
Sugita Y and Okamoto Y 2000 Chem. Phys. Lett. 329 261
|
[13] |
Xu S, Zhou X and Ou-Yang Z C 2012 Commun. Comput. Phys. 12 1293
|
[14] |
Wang F G and Landau D P 2001 Phys. Rev. Lett. 86 2050
|
[15] |
Yan Q and Pablo J J 2003 Phys. Rev. Lett. 90 035701
|
[16] |
Kim J, Straub J E and Keyes T 2006 Phys. Rev. Lett. 97 050601
|
[17] |
Laio A and Parrinello M 2002 Proc. Natl. Acad. Sci. USA 99 12562
|
[18] |
Mitsutake A and Okamoto Y 2009 J. Chem. Phys. 130 214105
|
[19] |
Shaw D E, Maragakis P, Lindorff-Larsen K, Piana S, Dror R O, Eastwood M P, Bank J A, Jumper J M, Salmon J K, Shan Y B and Wriggers W 2010 Science 330 341
|
[20] |
Wu Y L, Xu X H, Yang X J, Zou S and Ren X G 2014 Chin. Phys. B 23 028903
|
[21] |
Voter A F 1998 Phys. Rev. B 57 13985
|
[22] |
Shirts M R and Pande V S 2001 Phys. Rev. Lett. 86 4983
|
[23] |
Huang X H, Bowman G R and Pande V S 2008 J. Chem. Phys. 128 205106
|
[24] |
Noé F and Fischer S 2008 Curr. Opin. Struct. Biol. 18 154
|
[25] |
Becker O M and Karplus M 1997 J. Chem. Phys. 106 1495
|
[26] |
Wales D J 2001 Science 293 2067
|
[27] |
Krivov S V and Karplus M 2004 Proc. Natl. Acad. Sci. USA 101 14766
|
[28] |
Rao F and Caflisch A 2004 J. Mol. Biol. 342 299
|
[29] |
Gfeller D, Rios P D L, Caflish A and Rao F 2007 Proc. Natl. Acad. Sci. USA 104 1817
|
[30] |
Noé F, Horenko I, Schütte C and Smith J C 2007 J. Chem. Phys. 126 155102
|
[31] |
Chodera J D, Singhal N, Pande V S, Dill K A and Swope W C 2007 J. Chem. Phys. 126 155101
|
[32] |
Prada-Gracia D, Gomez-Gardenes J, Echenique P and Falo F 2009 PLos Comput. Biol. 5 e1000415
|
[33] |
Bowman G R, Meng L and Huang X H 2013 J. Chem. Phys. 139 121905
|
[34] |
Weber J K, Jack R L and Pande V S 2013 J. Am. Chem. Soc. 135 5501
|
[35] |
Gong L C and Zhou X 2009 Phys. Rev. E 80 026707
|
[36] |
Gong L C and Zhou X 2010 J. Phys. Chem. B 114 10266
|
[37] |
Lu S J and Zhou X 2015 Commun. Theor. Phys. 63 10
|
[38] |
Drozdov A N, Grossfield A and Pappu R V 2004 J. Am. Chem. Soc. 126 2574
|
[39] |
Zwanzig R 1988 Proc. Natl. Acad. Sci. USA 85 2029
|
[40] |
Phillips J C, et al. 2005 J. Comput. Chem. 26 1781
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|