Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077802    DOI: 10.1088/1674-1056/20/7/077802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD

Hou Guo-Fu(侯国付), Geng Xin-Hua(耿新华), Zhang Xiao-Dan(张晓丹), Sun Jian(孙建), Zhang Jian-Jun(张建军), and Zhao Ying(赵颖)
Institute of Photo-electronics, Nankai University, Tianjin 300071, China
Abstract  A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of H$\alpha$ and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.
Keywords:  Fourier transfer infrared spectroscopy      optical emission spectroscopy      Si—H bonding configuration      oxygen impurity  
Received:  23 September 2010      Revised:  11 February 2011      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.55.A- (Nucleation and growth)  
  73.63.Bd (Nanocrystalline materials)  

Cite this article: 

Hou Guo-Fu(侯国付), Geng Xin-Hua(耿新华), Zhang Xiao-Dan(张晓丹), Sun Jian(孙建), Zhang Jian-Jun(张建军), and Zhao Ying(赵颖) Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD 2011 Chin. Phys. B 20 077802

[1] Shah A V, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C and Graf U 2003 Sol. Energ. Mat. Sol. C 78 469
[2] Oliver V 2001 On the Physics of Microcrystalline Silicon Thin Film Solar Cells: from Material to Devices with High Conversion Efficiencies (Ph.D thesis) (German: Forschungszentrum Juelich, Institute of Photovoltaik)
[3] Tobias R Microcrystalline Silicon for Solar Cells Prepared by 13.56MHz PECVD: Prequisities for High Quality Material at High Growth Rate (Ph.D thesis) (German: Forschungszentrum Juelich, Institute of Photovoltaik)
[4] Guha S, Narasimhan K L and Pietruszko S M 1981 J. Appl. Phys. 52 859
[5] Han D, Wang K, Owens J M, Gedvilas L, Nelson B, Habuchi H and Tanaka M 2003 J. Appl. Phys. 93 3776
[6] Gupta N D and Chaudhuri P 2001 J. Non-Cryst. Solids 289 168
[7] Finger F, Carius R, Dylla T, Klein S, Okur S and Günes M 2003 IEE Proc. Circuits Devices Syst 150 300
[8] Klein S, Finger F, Cariu R, Wagner H and Stutzmann M 2001 Thin Solid Films 395 305
[9] Xu Y Y, Liao X B, Kong G L, Zeng X B, Hu Z H, Diao H W and Zhang S B 2003 J. Cryst. Growth 256 27
[10] Kroll U, Meier J, Torres P, Pohl J and Shah A 1998 J. Non-Cryst. Solids 227—230 68
[11] Cardona M 1983 Phys. Stat. Sol. (b) 118 463
[12] Deng X M 1991 Phys. Rev. B 43 4820
[13] Hou G F, Mai Y H, Xue J M, Zhao Y, Zhang X D, Ren H Z, Zhang D K, Sun J and Geng X H 2003 Phys. Stat. Sol. (a) 199 238
[14] Kroll U, Meier J, Keppner H and Shah A 1995 J. Vac. Sci. Technol. A 13 2742
[15] Nasuno Y, Kondo M and Matsuda A 2002 Jpn. J. Appl. Phys. 41 5912
[16] Tabuchi T, Takashiri M and Mizukami H 2003 Surf. Coat. Technol. 173 243
[17] Fukuda Y, Sakuma Y, Fukai C, Fujimura Y, Azuma K and Shirai H 2001 Thin Solid Films 386 256
[18] Feitknecht L, Meier J, Torres P, Zurcher J and Shah A 2002 Sol. Energ. Mat. Sol. C 74 539
[19] Torres P, Kroll U, Keppner H, Meier J, Sauvain E and Shah A 1998 Proceedings of the 5th European Conference on Thermal Plasma Processes St Petersburg, Russia, July 13—16, 1998 p. 855
[20] Chaudhuri P, Das D, Ray P P, Gupta N D, Roy D and Longeaud C 2004 J. Non-Cryst. Solids 338—340 236
[21] Matsuda A 1983 J. Non-Cryst. Solids 59—60 767
[22] Yang H D, Wu C Y, Li H B, Sun J, Zhao, Geng X H and Xiong S Z 2003 Acta Phys. Sin. 52 2324 (in Chinese)
[23] Guo L H and Lin R M 2000 Thin Solid Films 376 249
[24] Kovcka J, Fejfar A, Mates T, Fojt'hik P, Dohnalov'a K, Luterov'a K, Stuchl'hik J, Stuchl'hikov'a H, Pelant I, Rezek B, Stemmer A and Ito M 2004 Phys. Stat. Sol. (c) 1 1097
[25] Rath J K 2003 Sol. Energ. Mat. Sol. C 76 431
[1] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[2] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[3] Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University
Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Shi-Xiang Peng(彭士香), Yuan Xu(徐源), Jia-Mei Wen(温佳美), Jiang Sun(孙江), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2017, 26(9): 095204.
[4] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[5] Theoretical study of the effects of vacancy and oxygen impurity on Ti2GaC
Chen Jun-Jun (陈俊俊), Duan Ji-Zheng (段济正), Zhao Da-Qiang (赵大强), Zhang Jian-Rong (张建荣), Yang Yang (杨阳), Duan Wen-Shan (段文山). Chin. Phys. B, 2015, 24(8): 088101.
[6] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
[7] Diagnosis of a low pressure capacitively coupled argon plasma by using a simple collisional-radiative model
Yu Yi-Qing(虞一青), Xin Yu(辛煜), and Ning Zhao-Yuan(宁兆元). Chin. Phys. B, 2011, 20(1): 015207.
[8] Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device
Li Xue-Chen(李雪辰), Liu Zhi-Hui(刘志辉), Jia Peng-Ying(贾鹏英), Li Li-Chun(李立春), Yin Zeng-Qian(尹增谦), and Dong Li-Fang(董丽芳). Chin. Phys. B, 2007, 16(10): 3016-3021.
[9] The role of hydrogen in hydrogenated microcrystalline silicon film and in deposition process with VHF-PECVD technique
Yang Hui-Dong (杨恢东), Su Zhong-Yi (苏中义). Chin. Phys. B, 2006, 15(6): 1374-1378.
[10] Optical emission spectroscopy study on depositionprocess of microcrystalline silicon
Wu Zhi-Meng(吴志猛), Lei Qing-Song(雷青松), Geng Xin-Hua(耿新华), Zhao Ying(赵颖), Sun Jian(孙建), and Xi Jian-Ping(奚建平). Chin. Phys. B, 2006, 15(11): 2713-2717.
[11] Study of effect of H2 addition on the production of fluorocarbon radicals in H2C4F8 inductively coupled plasma via optical emission spectroscopy actinometry
Huang Song (黄松), Xin Yu (辛煜), Ning Zhao-Yuan (宁兆元). Chin. Phys. B, 2005, 14(8): 1608-1612.
No Suggested Reading articles found!