CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field |
Xiaoguang Wu(吴晓光)1,2 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The optical response of an inverted InAs/GaSb quantum well is studied theoretically. The influence of an in-plane magnetic field that is applied parallel to the quantum well is considered. This in-plane magnetic field will induce a dynamical polarization even when the electric field component of the external optical field is parallel to the quantum well. The electron-electron interaction in the quantum well system will lead to the de-polarization effect. This effect is found to be important and is taken into account in the calculation of the optical response. It is found that the main feature in the frequency dependence of the velocity-velocity correlation function remains when the velocity considered is parallel to the in-plane magnetic field. When the direction of the velocity is perpendicular to the in-plane magnetic field, the de-polarization effect will suppress the oscillatory behavior in the corresponding velocity-velocity correlation function. The in-plane magnetic field can change the band structure of the quantum well drastically from a gapped semiconductor to a no-gapped semi-metal, but it is found that the distribution of the velocity matrix elements or the optical transition matrix elements in the wave vector space has the same two-tadpole topology.
|
Received: 07 May 2019
Revised: 06 August 2019
Accepted manuscript online:
|
PACS:
|
73.21.Fg
|
(Quantum wells)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
78.67.De
|
(Quantum wells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076092 and 61290303). |
Corresponding Authors:
Xiaoguang Wu
E-mail: xgwu@red.semi.ac.cn
|
Cite this article:
Xiaoguang Wu(吴晓光) Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field 2019 Chin. Phys. B 28 107302
|
[1] |
Rogalski A 2009 Acta Phys. Polonica A 116 389
|
[42] |
Hu L H, Liu C X, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 045317
|
[2] |
Rhiger D R 2011 J. Electron. Mater. 40 1815
|
[43] |
Hu L H, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 085306
|
[3] |
Wang G, Xu Y, Wang L, Ren Z, He Z, Xing J and Niu Z 2012 J. Phys. D: Appl. Phys. 45 265103
|
[44] |
Hsu H C, Jhang M J, Chen T W and Guo G Y 2017 Phys. Rev. B 95 195408
|
[4] |
Heitmann D, Ziesmann M and Chang L L 1986 Phys. Rev. B 34 7463R
|
[45] |
Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
|
[5] |
Kono J, McCombe B D, Cheng J P, Lo I, Mitchel W C and Stutz C E 1994 Phys. Rev. B 50 12242R
|
[46] |
Yu P Y and Cardona M 2001 Fundamentals of Semiconductors Physics and Materials Properties (Berlin: Springer)
|
[6] |
Yang M J, Yang C H, Bennett B R and Shanabrook B V 1997 Phys. Rev. Lett. 78 4613
|
[47] |
Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
|
[7] |
Kono J, McCombe B D, Cheng J P, Lo I, Mitchel W C and Stutz C E 1997 Phys. Rev. B 55 1617
|
[48] |
Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173
|
[8] |
Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J and Walker P J 1997 Phys. Rev. Lett. 79 3034
|
[49] |
Pfeffer P and Zawadzki W 1990 Phys. Rev. B 41 1561
|
[9] |
Vasilyev Y, Suchalkin S, von Klitzing K, Meltser B, Ivanov S and Kopév P 1999 Phys. Rev. B 60 10636
|
[50] |
Pfeffer P and Zawadzki W 1996 Phys. Rev. B 53 12813
|
[10] |
Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A and Pepper M 1999 Phys. Rev. Lett. 82 2362
|
[51] |
Jancu J M, Scholz R, de Andrada e Silva E A and La Rocca G C 2005 Phys. Rev. B 72 193201
|
[11] |
Suzuki K, Miyashita S and Hirayama Y 2003 Phys. Rev. B 67 195319
|
[52] |
Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)
|
[12] |
Suzuki K, Takashina K, Miyashita S and Hirayama Y 2004 Phys. Rev. Lett. 93 016803
|
[53] |
Mahan G D 1990 Many-Particle Physics (New York: Plenum)
|
[13] |
Petchsingh C, Nicholas R J, Takashina K, Mason N J and Zeman J 2004 Phys. Rev. B 70 155306
|
[54] |
Tung L C, Wu X G, Pfeiffer L N, West K W and Wang Y J 2010 J. Appl. Phys. 108 083502
|
[14] |
Tung L C, Folkes P A, Gumbs Godfrey, Xu W and Wang Y J 2010 Phys. Rev. B 82 115305
|
[15] |
Petchsingh C, Nicholas R J, Takashina K and Mason N J 2007 Semicond. Sci. Technol. 22 194
|
[16] |
Jiang Y, Thapa S, Sanders G D, Stanton C J, Zhang Q, Kono J, Lou W K, Chang K, Hawkins S D, Klem J F, Pan W, Smirnov D and Jiang Z 2017 Phys. Rev. B 95 045116
|
[17] |
Knebl G, Pfeffer P, Schmid S, Kamp M, Bastard G, Batke E, Worschech L, Hartmann F and Höfling S 2018 Phys. Rev. B 98 041301
|
[18] |
Du L J, Li X W, Lou W K, Sullivan Gerard, Chang K, Kono Junichiro and Du R R 2017 Nat. Commun. 8 1971
|
[19] |
Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
|
[20] |
Knez I, Du R R and Sullivan G 2012 Phys. Rev. Lett. 109 186603.
|
[21] |
Du L, Knez I, Sullivan G and Du R R 2015 Phys. Rev. Lett. 114 096802
|
[22] |
Qu F, Beukman A J A, Nadj-Perge S, Wimmer M, Nguyen B M, Yi W, Thorp J, Sokolich M, Kiselev A A, Manfra M J, Marcus C M and Kouwenhoven L P 2015 Phys. Rev. Lett. 115 036803
|
[23] |
Li T, Wang P, Fu H, Du L, Schreiber K A, Mu X Y, Liu X X, Sullivan G, Csathy G A, Lin X and Du R R 2015 Phys. Rev. Lett. 115 136804
|
[24] |
Dyer G C, Shi X, Olson B V, Hawkins S D, Klem J F, Shaner E A and Pan W 2016 Appl. Phys. Lett. 108 013106
|
[25] |
Plank H, Tarasenko S A, Hummel T, Knebl G, Pfeffer P, Kamp M, Höfling S and Ganichev S D 2017 Physica E 85 193
|
[26] |
Couedo F, Irie H, Suzuki K, Onomitsu K and Muraki K 2016 Phys. Rev. B 94 035301
|
[27] |
Karalic M, Mueller S, Mittag C, Pakrouski K, Wu Q, Soluyanov A A, Troyer M, Tschirky T, Wegscheider W, Ensslin K and Ihn T 2016 Phys. Rev. B 94 241402
|
[28] |
Nichele F, Suominen H J, Kjaergaard M, Marcus C M, Sajadi E, Folk J A, Qu F, Beukman A J A, de Vries F K, van Veen J, Nadj-Perge S, Kouwenhoven L P, Nguyen B M, Kiselev A A, Yi W, Sokolich M, Manfra M J, Spanton E M and Moler K A 2016 New J. Phys. 18 083005
|
[29] |
Nguyen B M, Kiselev A A, Noah R, Yi W, Qu F, Beukman A J A, de Vries F K, van Veen J, Nadj-Perge S, Kouwenhoven L P, Kjaergaard M, Suominen H J, Nichele F, Marcus C M, Manfra M J and Sokolich M 2016 Phys. Rev. Lett. 117 077701
|
[30] |
Herling F, Morrison C, Knox C S, Zhang S, Newell O, Myronov M, Linfield E H and Marrows C H 2017 Phys. Rev. B 95 155307
|
[31] |
Nichele F, Kjaergaard M, Suominen H J, Skolasinski R, Wimmer M, Nguyen B M, Kiselev A A, Yi W, Sokolich M, Manfra M J, Qu F, Beukman A J A, Kouwenhoven L P and Marcus C M 2017 Phys. Rev. Lett. 118 016801
|
[32] |
Karalic M, Mittag C, Tschirky T, Wegscheider W, Ensslin K and Ihn T 2017 Phys. Rev. Lett. 118 206801
|
[33] |
Dyer G C, Shi X, Olson B V, Hawkins S D, Klem J F, Shaner E A and Pan W 2016 Appl. Phys. Lett. 108 013106
|
[34] |
Mittag C, Karalic M, Mueller S, Tschirky T, Wegscheider W, Nazarenko O, Kovalenko M V, Ihn T and Ensslin K 2017 Appl. Phys. Lett. 111 082101
|
[35] |
Mueller S, Mittag C, Tschirky T, Charpentier C, Wegscheider W, Ensslin K and Ihn T 2017 Phys. Rev. B 96 075406
|
[36] |
Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
|
[37] |
Chiang J C, Tsay S F, Chau Z M and Lo I 1996 Phys. Rev. Lett. 77 2053
|
[38] |
Nilsson K, Zakharova A, Lapushkin I, Yen S T and Chao K A 2006 Phys. Rev. B 74 075308
|
[39] |
Nilsson K, Zakharova A, Semenikhin I and Chao K A 2007 Phys. Rev. B 75 205318
|
[40] |
Wu X G and Pang M 2015 Chin. Phys. B 24 097301
|
[41] |
Wu X G 2017 J. Appl. Phys. 122 225704
|
[42] |
Hu L H, Liu C X, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 045317
|
[43] |
Hu L H, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 085306
|
[44] |
Hsu H C, Jhang M J, Chen T W and Guo G Y 2017 Phys. Rev. B 95 195408
|
[45] |
Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
|
[46] |
Yu P Y and Cardona M 2001 Fundamentals of Semiconductors Physics and Materials Properties (Berlin: Springer)
|
[47] |
Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
|
[48] |
Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173
|
[49] |
Pfeffer P and Zawadzki W 1990 Phys. Rev. B 41 1561
|
[50] |
Pfeffer P and Zawadzki W 1996 Phys. Rev. B 53 12813
|
[51] |
Jancu J M, Scholz R, de Andrada e Silva E A and La Rocca G C 2005 Phys. Rev. B 72 193201
|
[52] |
Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)
|
[53] |
Mahan G D 1990 Many-Particle Physics (New York: Plenum)
|
[54] |
Tung L C, Wu X G, Pfeiffer L N, West K W and Wang Y J 2010 J. Appl. Phys. 108 083502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|