Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107302    DOI: 10.1088/1674-1056/ab3c29
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field

Xiaoguang Wu(吴晓光)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The optical response of an inverted InAs/GaSb quantum well is studied theoretically. The influence of an in-plane magnetic field that is applied parallel to the quantum well is considered. This in-plane magnetic field will induce a dynamical polarization even when the electric field component of the external optical field is parallel to the quantum well. The electron-electron interaction in the quantum well system will lead to the de-polarization effect. This effect is found to be important and is taken into account in the calculation of the optical response. It is found that the main feature in the frequency dependence of the velocity-velocity correlation function remains when the velocity considered is parallel to the in-plane magnetic field. When the direction of the velocity is perpendicular to the in-plane magnetic field, the de-polarization effect will suppress the oscillatory behavior in the corresponding velocity-velocity correlation function. The in-plane magnetic field can change the band structure of the quantum well drastically from a gapped semiconductor to a no-gapped semi-metal, but it is found that the distribution of the velocity matrix elements or the optical transition matrix elements in the wave vector space has the same two-tadpole topology.

Keywords:  quantum well      magnetic field      de-polarization effect  
Received:  07 May 2019      Revised:  06 August 2019      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  78.20.Ls (Magneto-optical effects)  
  78.30.Fs (III-V and II-VI semiconductors)  
  78.67.De (Quantum wells)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61076092 and 61290303).

Corresponding Authors:  Xiaoguang Wu     E-mail:  xgwu@red.semi.ac.cn

Cite this article: 

Xiaoguang Wu(吴晓光) Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field 2019 Chin. Phys. B 28 107302

[1] Rogalski A 2009 Acta Phys. Polonica A 116 389
[42] Hu L H, Liu C X, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 045317
[2] Rhiger D R 2011 J. Electron. Mater. 40 1815
[43] Hu L H, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 085306
[3] Wang G, Xu Y, Wang L, Ren Z, He Z, Xing J and Niu Z 2012 J. Phys. D: Appl. Phys. 45 265103
[44] Hsu H C, Jhang M J, Chen T W and Guo G Y 2017 Phys. Rev. B 95 195408
[4] Heitmann D, Ziesmann M and Chang L L 1986 Phys. Rev. B 34 7463R
[45] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[5] Kono J, McCombe B D, Cheng J P, Lo I, Mitchel W C and Stutz C E 1994 Phys. Rev. B 50 12242R
[46] Yu P Y and Cardona M 2001 Fundamentals of Semiconductors Physics and Materials Properties (Berlin: Springer)
[6] Yang M J, Yang C H, Bennett B R and Shanabrook B V 1997 Phys. Rev. Lett. 78 4613
[47] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[7] Kono J, McCombe B D, Cheng J P, Lo I, Mitchel W C and Stutz C E 1997 Phys. Rev. B 55 1617
[48] Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173
[8] Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J and Walker P J 1997 Phys. Rev. Lett. 79 3034
[49] Pfeffer P and Zawadzki W 1990 Phys. Rev. B 41 1561
[9] Vasilyev Y, Suchalkin S, von Klitzing K, Meltser B, Ivanov S and Kopév P 1999 Phys. Rev. B 60 10636
[50] Pfeffer P and Zawadzki W 1996 Phys. Rev. B 53 12813
[10] Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A and Pepper M 1999 Phys. Rev. Lett. 82 2362
[51] Jancu J M, Scholz R, de Andrada e Silva E A and La Rocca G C 2005 Phys. Rev. B 72 193201
[11] Suzuki K, Miyashita S and Hirayama Y 2003 Phys. Rev. B 67 195319
[52] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)
[12] Suzuki K, Takashina K, Miyashita S and Hirayama Y 2004 Phys. Rev. Lett. 93 016803
[53] Mahan G D 1990 Many-Particle Physics (New York: Plenum)
[13] Petchsingh C, Nicholas R J, Takashina K, Mason N J and Zeman J 2004 Phys. Rev. B 70 155306
[54] Tung L C, Wu X G, Pfeiffer L N, West K W and Wang Y J 2010 J. Appl. Phys. 108 083502
[14] Tung L C, Folkes P A, Gumbs Godfrey, Xu W and Wang Y J 2010 Phys. Rev. B 82 115305
[15] Petchsingh C, Nicholas R J, Takashina K and Mason N J 2007 Semicond. Sci. Technol. 22 194
[16] Jiang Y, Thapa S, Sanders G D, Stanton C J, Zhang Q, Kono J, Lou W K, Chang K, Hawkins S D, Klem J F, Pan W, Smirnov D and Jiang Z 2017 Phys. Rev. B 95 045116
[17] Knebl G, Pfeffer P, Schmid S, Kamp M, Bastard G, Batke E, Worschech L, Hartmann F and Höfling S 2018 Phys. Rev. B 98 041301
[18] Du L J, Li X W, Lou W K, Sullivan Gerard, Chang K, Kono Junichiro and Du R R 2017 Nat. Commun. 8 1971
[19] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[20] Knez I, Du R R and Sullivan G 2012 Phys. Rev. Lett. 109 186603.
[21] Du L, Knez I, Sullivan G and Du R R 2015 Phys. Rev. Lett. 114 096802
[22] Qu F, Beukman A J A, Nadj-Perge S, Wimmer M, Nguyen B M, Yi W, Thorp J, Sokolich M, Kiselev A A, Manfra M J, Marcus C M and Kouwenhoven L P 2015 Phys. Rev. Lett. 115 036803
[23] Li T, Wang P, Fu H, Du L, Schreiber K A, Mu X Y, Liu X X, Sullivan G, Csathy G A, Lin X and Du R R 2015 Phys. Rev. Lett. 115 136804
[24] Dyer G C, Shi X, Olson B V, Hawkins S D, Klem J F, Shaner E A and Pan W 2016 Appl. Phys. Lett. 108 013106
[25] Plank H, Tarasenko S A, Hummel T, Knebl G, Pfeffer P, Kamp M, Höfling S and Ganichev S D 2017 Physica E 85 193
[26] Couedo F, Irie H, Suzuki K, Onomitsu K and Muraki K 2016 Phys. Rev. B 94 035301
[27] Karalic M, Mueller S, Mittag C, Pakrouski K, Wu Q, Soluyanov A A, Troyer M, Tschirky T, Wegscheider W, Ensslin K and Ihn T 2016 Phys. Rev. B 94 241402
[28] Nichele F, Suominen H J, Kjaergaard M, Marcus C M, Sajadi E, Folk J A, Qu F, Beukman A J A, de Vries F K, van Veen J, Nadj-Perge S, Kouwenhoven L P, Nguyen B M, Kiselev A A, Yi W, Sokolich M, Manfra M J, Spanton E M and Moler K A 2016 New J. Phys. 18 083005
[29] Nguyen B M, Kiselev A A, Noah R, Yi W, Qu F, Beukman A J A, de Vries F K, van Veen J, Nadj-Perge S, Kouwenhoven L P, Kjaergaard M, Suominen H J, Nichele F, Marcus C M, Manfra M J and Sokolich M 2016 Phys. Rev. Lett. 117 077701
[30] Herling F, Morrison C, Knox C S, Zhang S, Newell O, Myronov M, Linfield E H and Marrows C H 2017 Phys. Rev. B 95 155307
[31] Nichele F, Kjaergaard M, Suominen H J, Skolasinski R, Wimmer M, Nguyen B M, Kiselev A A, Yi W, Sokolich M, Manfra M J, Qu F, Beukman A J A, Kouwenhoven L P and Marcus C M 2017 Phys. Rev. Lett. 118 016801
[32] Karalic M, Mittag C, Tschirky T, Wegscheider W, Ensslin K and Ihn T 2017 Phys. Rev. Lett. 118 206801
[33] Dyer G C, Shi X, Olson B V, Hawkins S D, Klem J F, Shaner E A and Pan W 2016 Appl. Phys. Lett. 108 013106
[34] Mittag C, Karalic M, Mueller S, Tschirky T, Wegscheider W, Nazarenko O, Kovalenko M V, Ihn T and Ensslin K 2017 Appl. Phys. Lett. 111 082101
[35] Mueller S, Mittag C, Tschirky T, Charpentier C, Wegscheider W, Ensslin K and Ihn T 2017 Phys. Rev. B 96 075406
[36] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[37] Chiang J C, Tsay S F, Chau Z M and Lo I 1996 Phys. Rev. Lett. 77 2053
[38] Nilsson K, Zakharova A, Lapushkin I, Yen S T and Chao K A 2006 Phys. Rev. B 74 075308
[39] Nilsson K, Zakharova A, Semenikhin I and Chao K A 2007 Phys. Rev. B 75 205318
[40] Wu X G and Pang M 2015 Chin. Phys. B 24 097301
[41] Wu X G 2017 J. Appl. Phys. 122 225704
[42] Hu L H, Liu C X, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 045317
[43] Hu L H, Xu D H, Zhang F C and Zhou Y 2016 Phys. Rev. B 94 085306
[44] Hsu H C, Jhang M J, Chen T W and Guo G Y 2017 Phys. Rev. B 95 195408
[45] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[46] Yu P Y and Cardona M 2001 Fundamentals of Semiconductors Physics and Materials Properties (Berlin: Springer)
[47] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[48] Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173
[49] Pfeffer P and Zawadzki W 1990 Phys. Rev. B 41 1561
[50] Pfeffer P and Zawadzki W 1996 Phys. Rev. B 53 12813
[51] Jancu J M, Scholz R, de Andrada e Silva E A and La Rocca G C 2005 Phys. Rev. B 72 193201
[52] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)
[53] Mahan G D 1990 Many-Particle Physics (New York: Plenum)
[54] Tung L C, Wu X G, Pfeiffer L N, West K W and Wang Y J 2010 J. Appl. Phys. 108 083502
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[5] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[6] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[7] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[8] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[9] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[10] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[11] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[12] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[13] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[14] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[15] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
No Suggested Reading articles found!