Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 078301    DOI: 10.1088/1674-1056/27/7/078301
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The electric field and frequency responses of giant electrorheological fluids

Hanqing Zhao(赵汉青)1,2, Rong Shen(沈容)2, Kunquan Lu(陆坤权)2
1 School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 Beijing National Laboratory for Condensed Matter Physics, Key Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The giant electrorheological (ER) fluid is based on the principle of a polar molecule dominated electrorheological (PM-ER) effect. The response of the shear stress for PM-ER fluid in alternate electric fields with triangle/square wave forms for different frequencies has been studied. The results show that the shear stress cannot well follow the rapid change of electric field and the average shear stresses of PM-ER fluids decrease with the increasing frequency of the applied field due to the response decay of the shear stress on applied field. The behavior is quite different from that of traditional ER fluids. However, the average shear stress of PM-ER fluid in a square wave electric field of ±E at low frequency can keep at high value. The obtained knowledge must be helpful for the design and operation of PM-ER fluids in the applications.

Keywords:  electrorheological fluid      frequency response  
Received:  29 March 2018      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  83.80.Gv (Electro- and magnetorheological fluids)  
  83.85.Cg (Rheological measurements—rheometry)  
  83.85.Jn (Viscosity measurements)  
  83.60.Np (Effects of electric and magnetic fields)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0403000) and the National Natural Science Foundation of China (Grant No. 11574355).

Corresponding Authors:  Rong Shen     E-mail:  rshen@iphy.ac.cn

Cite this article: 

Hanqing Zhao(赵汉青), Rong Shen(沈容), Kunquan Lu(陆坤权) The electric field and frequency responses of giant electrorheological fluids 2018 Chin. Phys. B 27 078301

[1] Lu K Q, Wen W J, Li C X and Xie S S 1995 Phys. Rev. E 52 6329
[2] Ma H R, Wen W J, Tam W Y and Sheng P 1996 Phys. Rev. Lett. 77 2499
[3] Davis L C 1997 J. Appl. Phys. 81 1985
[4] Sheng P and Wen W J 2010 Solid State Commun. 150 1023
[5] Shen R, Liu R, Wang D, Chen K, Sun G and Lu K Q 2014 RSC Adv. 4 61968
[6] Davis L C 1993 J. Appl. Phys. 73 680
[7] Chen T Y and Luckham P F 1993 Colloid. Surf. A 78 167
[8] Donald L K and Martinek T W 1967 J. Appl. Phys. 38 67
[9] Wu C W and Conradz H 1998 J. Phys. D-Appl. Phys. 31 3312
[10] Wen W, Huang X, Yang S, Lu K and Sheng P 2003 Nat. Mater. 2 727
[11] Lu K Q, Shen R, Wang X Z, Sun G, Wen W J and Liu J X 2006 Chin. Phys. 15 2476
[12] Shen R, Wang X Z, Lu Y, Wang D, Sun G, Cao Z X and Lu K Q 2009 Adv. Mater. 21 4631
[13] Wang X Z, Shen R, Wen W J and Lu K Q 2005 Int. J. Mod. Phys. B 19 1110
[14] Yang S H, Gao X, Li C X, Wang Q, Shen R, Sun G and Lu K Q 2012 Mod. Phys. Lett. B 26 1150023
[15] Yang S H, Zhao L S, Wang Q, Shen R, Sun G, Li C X and Lu K Q 2013 Acta Phys. Sin. 62 164701 (in Chinese)
[1] Electrical field-driven ripening profiles of colloidal suspensions
Zi-Rui Wang(王子瑞), Wei-Jia Wen(温维佳), Li-Yu Liu(刘雳宇). Chin. Phys. B, 2018, 27(6): 068301.
[2] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[3] Characteristic analysis of the optical delay in frequency response of resonant cavity enhanced (RCE) photodetectors
Guo Jian-Chuan(郭剑川), Zuo Yu-Hua(左玉华), Zhang Yun(张云), Ding Wu-Chang(丁武昌), Cheng Bu-Wen(成步文), Yu Jin-Zhong(余金中), and Wang Qi-Ming(王启明). Chin. Phys. B, 2009, 18(6): 2223-2228.
[4] Analytic approach to the small-signal frequency response of saturated semiconductor optical amplifiers using multisection model
Zhou En-Bo(周恩波), Zhang Xin-Liang(张新亮), and Huang De-Xiu(黄德修). Chin. Phys. B, 2007, 16(10): 2998-3003.
[5] Open-loop frequency response for a chaotic masking system
Huang Xian-Gao(黄显高), Yu Pei, and Huang Wei(黄伟). Chin. Phys. B, 2006, 15(12): 2894-2901.
[6] Polar molecule dominated electrorheological effect
Lu Kun-Quan(陆坤权), Shen Rong(沈容), Wang Xue-Zhao(王学昭), Sun Gang(孙刚), Wen Wei-Jia(温维佳), and Liu Ji-Xing(刘寄星). Chin. Phys. B, 2006, 15(11): 2476-2480.
[7] Many-body dipole-induced dipole model for electrorheological fluids
Huang Ji-Ping (黄吉平), Yu Kin-Wah (余建华). Chin. Phys. B, 2004, 13(7): 1065-1069.
[8] ANALYSIS OF PARTICLE-PARTICLE FORCES IN ELECTRORHEOLOGICAL FLUIDS
Zhao He-ping (赵鹤平), Liu Zheng-you (刘正猷), Liu You-yan (刘有延). Chin. Phys. B, 2001, 10(1): 35-39.
[9] RESONANCE RESPONSE OF ELECTRORHEOLOGICAL FLUIDS IN VERTICAL OSCILLATION SQUEEZE FLOW
Liu Li-wei (刘立伟), Wang Zuo-wei (王作维), Liu Ge (刘戈), Jiang Yong-gang (蒋勇刚), Qiu Zhi-yong (邱志勇), Zhou Lu-wei (周鲁卫). Chin. Phys. B, 2000, 9(12): 944-948.
No Suggested Reading articles found!