Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114101    DOI: 10.1088/1674-1056/acc05a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Structure study of a dielectric laser accelerator with discrete translational symmetry

Yangfan He(何阳帆)1,2,†, Bin Sun(孙斌)1,2,3, Mingjiang Ma(马铭江)4, Wei Li(李伟)1,2, Zhihao Cui(崔志浩)1,2, and Zongqing Zhao(赵宗清)1,‡
1 Laser Fusion Research Center, CAEP, Mianyang 621900, China;
2 The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China;
3 University of Science and Technology of China, Hefei 230026, China;
4 The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
Abstract  The dielectric laser accelerator (DLA) is a promising technology for achieving high-gradient acceleration in a compact design. Its advantages include ease of cascading and an energy gain per unit distance which can exceed that of conventional accelerators by two orders of magnitude. This paper establishes rules for efficient particle acceleration using dielectric structures based on basic equations, proposes a design principle for DLA structures with clear physical images and verifies the accuracy of the corresponding formula for energy gain. DLA structures with different specifications, materials and geometric shapes are constructed, and the achievable acceleration gradient is calculated. Our results demonstrate that effective acceleration can be achieved when the electric field sensed by particles in the acceleration cavity has zero frequency, which provides a powerful method for designing such devices. Furthermore, we demonstrate that the simplified formula for calculating energy gain presented in this paper can accurately determine the energy gain of particles during the design of acceleration structures using a dielectric accelerator.
Keywords:  dielectric laser accelerator      acceleration structure      high-gradient accelerator  
Received:  21 November 2022      Revised:  16 February 2023      Accepted manuscript online:  02 March 2023
PACS:  41.75.Jv (Laser-driven acceleration?)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.-p (Wave optics)  
  41.20.-q (Applied classical electromagnetism)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975214).
Corresponding Authors:  Yangfan He, Zongqing Zhao     E-mail:  heyangfan@mail.ustc.edu.cn;zhaozongqing99@caep.ac.cn

Cite this article: 

Yangfan He(何阳帆), Bin Sun(孙斌), Mingjiang Ma(马铭江), Wei Li(李伟), Zhihao Cui(崔志浩), and Zongqing Zhao(赵宗清) Structure study of a dielectric laser accelerator with discrete translational symmetry 2023 Chin. Phys. B 32 114101

[1] McNeil B W and Thompson N R 2002 Plasma. Phys. Rep. 28 453
[3] Ginzton E L, Hansen W W and Kennedy W R 1948 Rev. Sci. Instrum. 19 89
[4] Schardt D, Elsässer T and Ertner D S 2010 Rev. Sci. Instrum. 82 383
[5] Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Miller R J and Kärtner F X 2015 Nat. Commun. 6 8486
[6] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[7] Macchi A, Borghesi M and PassoniIon M 2013 Rev. Mod. Phys. 85 751
[8] England R J, Noble R J, Bane K, Dowell D H, Ng C K, Spencer J E, Tantawi S, Wu Z, Byer R L, Peralta E and Soong K 2014 Rev. Mod. Phys. 86 1337
[9] Breuer J and Hommelhoff P 2013 Phys. Rev. Lett. 111 134803
[10] Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G and Byer R L 2013 Nature 503 91
[11] Leedle K J, Pease R F, Byer R L and Harris J S 2015 Optica 2 158
[12] Leedle K J, Ceballos A, Deng H Y, Solgaard O, Pease R F, Byer R L and Harris J S 2015 Opt. Lett. 40 4344
[13] Niedermayer U, Egenolf T, Boine-Frankenheim O and Hommelhoff P 2018 Phys. Rev. Lett. 121 21480
[14] Black D S, Leedle K J, Miao Y, Niedermayer U, Byer R L and Solgaard O (ACHIP Collaboration) 2019 Phys. Rev. Lett. 122 104801
[15] Schönenberger N, Mittelbach A, Yousefi P, McNeur J, Niedermayer U and Hommelhoff P 2019 Phys. Rev. Lett. 123 264803
[16] Black D S, Niedermayer U, Miao Y, Zhao Z X, Solgaard O, Byer R L and Leedle K J 2019 Phys. Rev. Lett. 123 264802
[17] Wootton K P, McNeur J and Leedle K J 2016 Rev. Accelerator Sci. Technol. 9 105
[18] Faure J, Glinec. Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541
[19] Leemans W P, Nagler B, Gonsalves A J, Tóth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696
[20] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[21] Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E 2013 Rev. Mod. Phys. 85 1
[22] Hong X R, Zhou W J, Xie B S, Yang Y, Wang L, Tian J M, Tang R A and Duan W S 2017 Chin. Phys. B 26 65203
[23] Yue D N, Chen M, Zhao Y, Geng P F, Yuan X H, Dong Q L, Sheng Z M and Zhang J 2022 Chin. Phys. B 31 045205
[24] Zhang Q, Ping Y L, An W M, Sun W and Zhong J Y 2022 Chin. Phys. B 31 065203
[25] Hughes T, Tan S, Zhao Z X, Sapra N V, Leedle K J, Deng H Y, Miao Y, Black D S, Solgaard O, Harris J S, Vuckovic J, Byer R L, Fan S H, England R J, Lee Y J and Qi M H 2018 Phys. Rev. Appl. 9 054017
[26] Sapra N V, Yang K Y, Vercruysse D, Leedle K J, Black D S, England R J, Su L, Trivedi R, Miao Y, Solgaard O, Byer R L and Vuckovic J 2020 Science 367 79
[27] Niedermayer U, Lautenschläger J, Egenolf T and Boine-Frankenheim O 2021 Phys. Rev. Appl. 16 024022
[28] Plettner T, Lu P P and Byer R L 2006 Phys. Rev. Spec. Top. Accel Beams 9 111301
[29] Breuer J, McNeur J and Hommelhoff P 2014 J. Phys. B:At. Mol. Opt. Phys. 47 234004
[30] Aimidula A, Bake M A, Wan F, Xie B S, Welsch C P, Xia G, Mete O, Uesaka M, Matsumura Y, Yoshida M and Koyama K 2014 Phys. Plasmas 21023110
[31] Niedermayer U, Egenolf T and Boine-Frankenheim O 2017 Phys. Rev. Accel. Beams 20 111302
[32] Kozák M, Beck P, Deng H, McNeur J, Schönenberger N, Gaida C, Stutzki F, Gebhardt M, Limpert J, Ruehl A, Hartl I, Solgaard O, Harris J S, Byer R L and Hommelhoff P 2017 Opt. Express 25 19195
[33] Liu W H, Yu Z, Sun L, Liu Y C, Jia Q K, Xu H and Sun B G 2020 Phys. Rev. Appl. 14 014018
[34] Black D S, Zhao Z X, Leedle K J, Miao Y, Byer R L, Fan S H and Solgaard O 2020 Phys. Rev. Accel. Beams 23 114001
[35] Maxwell J C 1865 Phil. Trans. R. Soc. London 155 459
[36] Bloch F 1929 Z. Phys. 52 555
[37] Floquet G 1883 Ann. Sci. Ecole Norm. S 12 47
[38] Yee K 1966 IEEE. Trans. Antennas Propag. 14 302
[39] Rumpf R C 2012 Prog. Electromagn. Res. B 36 221
[40] He Y F, Sun B, Ma M J, Li W, He Q Y, Cui Z H, Wang S Y and Zhao Z Q 2022 Nucl. Sci. Tech. 33 120
[41] Hughes T, Veronis G, Wootton K P, England R J and Fan S H 2017 Opt. Express 25 15414
[1] Structure and material study of dielectric laser accelerators based on the inverse Cherenkov effect
Bin Sun(孙斌), Yang-Fan He(何阳帆), Ruo-Yun Luo(罗若云), Tai-Yang Zhang(章太阳), Qiang Zhou(周强), Shao-Yi Wang(王少义), Du Wang(王度), and Zong-Qing Zhao(赵宗清). Chin. Phys. B, 2023, 32(9): 094101.
No Suggested Reading articles found!